首页> 外文OA文献 >Large-scale feature selection with Gaussian mixture models for the classification of high dimensional remote sensing images
【2h】

Large-scale feature selection with Gaussian mixture models for the classification of high dimensional remote sensing images

机译:高斯混合模型的大规模特征选择用于高维遥感影像的分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A large scale feature selection wrapper is discussed for the classification of high dimensional remote sensing. An efficient implementation is proposed based on intrinsic properties of Gaussian mixtures models and block matrix. The criterion function is split into two parts : one that is updated to test each feature and one that needs to be updated only once per feature selection. This split saved a lot of computation for each test. The algorithm is implemented in C++ and integrated into the Orfeo Toolbox. It has been compared to other classification algorithmsudon two high dimension remote sensing images. The results show that the approach provide good classification accuracies with low computation time.
机译:讨论了用于高维遥感分类的大规模特征选择包装器。基于高斯混合模型和块矩阵的内在属性,提出了一种有效的实现方法。标准功能分为两个部分:一个已更新以测试每个功能,而每个功能选择仅需要更新一次。此拆分为每个测试节省了大量计算。该算法以C ++实现,并集成到Orfeo工具箱中。它已与其他分类算法 udon比较了两个高维遥感图像。结果表明,该方法具有良好的分类精度,且计算时间短。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号