首页> 外文OA文献 >Accounting for mean flow effects in a zero-Mach number thermo-acoustic solver: application to entropy induced combustion instabilities
【2h】

Accounting for mean flow effects in a zero-Mach number thermo-acoustic solver: application to entropy induced combustion instabilities

机译:零马赫数热声求解器中的平均流量影响的解释:在熵引起的燃烧不稳定性中的应用

摘要

Virtually all combustion chambers are subject to instabilities. Consequently there is a need to better understand them so as to control them. A possibility is to simulate the reactive flow within a combustor with the Large-Eddy Simulation (LES) method. However LES results come at a tremendous computational cost. Another route is to reduce the complexity of the problem to a simple thermoacoustic Helmholtz wave equation, which can be solved in the frequency domain as an eigenvalue problem. The coupling between the flame and the acoustics is then taken into account via proper models. The main drawback of this latter methodology is that it relies on the zero-Mach number assumption. Hence all phenomena inherent to mean flow effects are neglected. The present thesis aims to provide a novel strategy to introduce back some mean flow effects within the zero-Mach number framework. In a first part, the proper way to impose high-speed elements such as a turbine is investigated. The second part focuses on the coupling between acoustics and temperature heterogeneities that are naturally generated at the flame and convected downstream by the flow. Such phenomenon is important because it is responsible for indirect combustion noise that may drive a thermoacoustic instability. A Delayed Entropy Coupled Boundary Condition (DECBC) is then derived in order to account for this latter mechanism in the framework of a Helmholtz solver where the baseline flow is assumed at rest. In the last part, a realistic aero-engine combustor that features a mixed acoustic/entropy instability is studied. The methodology developed in the present thesis is tested and compared to LES computations. It is shown that computations with the Helmholtz solver can reproduce a complex combustion instability, and that this latter methodology is a potential tool to design new combustors so as to predict and avoid combustion instabilities.
机译:几乎所有的燃烧室都不稳定。因此,需要更好地理解它们以便控制它们。一种可能性是使用大涡模拟(LES)方法来模拟燃烧室内的反应流。但是,LES结果要付出巨大的计算成本。另一种途径是将问题的复杂性降低为一个简单的热声亥姆霍兹波动方程,可以在频域中将其作为特征值问题进行求解。然后通过适当的模型考虑火焰与声学之间的耦合。后一种方法的主要缺点是它依赖零马赫数假设。因此,均流效应固有的所有现象都可以忽略。本文旨在提供一种新颖的策略,以在零马赫数框架内引入一些平均流量效应。在第一部分中,研究了施加高速元件(例如涡轮机)的正确方法。第二部分着重于声学和温度异质性之间的耦合,这些异质性是在火焰处自然产生的,并在流动的下游对流。这种现象很重要,因为它是间接燃烧噪声的原因,间接燃烧噪声可能导致热声不稳定。然后推导延迟熵耦合边界条件(DECBC),以便在假设基线流量为静态的亥姆霍兹求解器框架中考虑后一种机制。在最后一部分,研究了一种具有混合声学/熵不稳定性的现实航空发动机燃烧器。测试了本文开发的方法并将其与LES计算进行了比较。结果表明,使用亥姆霍兹求解器进行的计算可以再现复杂的燃烧不稳定性,而后一种方法是设计新燃烧器以预测和避免燃烧不稳定性的潜在工具。

著录项

  • 作者

    Motheau Emmanuel;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号