首页> 外文OA文献 >High Confidence Intervals Applied to Aircraft Altitude Prediction
【2h】

High Confidence Intervals Applied to Aircraft Altitude Prediction

机译:高置信区间应用于飞机高度预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes the application of high-confidence-interval prediction methods to the aircraft trajectory prediction problem, more specifically to the altitude prediction during climb. We are interested in methods for finding two-sided intervals that contain, with a specified confidence, at least a desired proportion of the conditional distribution of the response variable. This paper introduces two-sided Bonferroni-quantile confidence intervals, which is a new method for obtaining high-confidence two-sided intervals in quantile regression. This paper also uses the Bonferroni inequality to propose a new method for obtaining tolerance intervals in least squares regression. The latter has the advantages of being reliable, fast, and easy to calculate. We compare physical point-mass models to the introduced models on an air traffic management data set composed of traffic at major French airports. Experimental results show that the proposed interval prediction models perform significantly better than the conventional point-mass model currently used in most trajectory predictors. When comparing with a recent state-of-the-art point-mass model with adaptive mass estimation, the proposed methods give altitude intervals that are slightly wider but more reliable.
机译:本文介绍了高置信区间预测方法在飞机轨迹预测问题中的应用,尤其是在爬升过程中的高度预测中的应用。我们对找到两侧间隔的方法感兴趣,该间隔具有指定的置信度,至少包含期望变量的条件变量的条件分布。本文介绍了双面Bonferroni分位数置信区间,这是一种在分位数回归中获得高置信度双面区间的新方法。本文还使用Bonferroni不等式提出了一种在最小二乘回归中获得公差区间的新方法。后者的优点是可靠,快速且易于计算。我们在由法国主要机场的流量组成的空中交通管理数据集上,将物理点质量模型与引入的模型进行了比较。实验结果表明,所提出的区间预测模型的性能明显优于目前大多数轨迹预测器中使用的常规点质量模型。与最近的具有自适应质量估计的最新点质量模型进行比较时,所提出的方法给出的海拔区间稍宽一些,但更可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号