This article proposes a fast strategy for optimal dispatching of power flows in a microgrid with storage. The investigated approach is based on the use of standard mixed integer linear programming (MILP) algorithm in association with a coarse linear model of the microgrid. The resulting computational time is compatible with simulations over long periods of time allowing the integration of seasonal and stochastic features related to renewable energies. By using this fast scheduling strategy over a complete year of simulation, the microgrid cost effectiveness is considered. Finally, a sensitivity analysis is carried out in order to identify the most influent parameters that should be considered in a sizing loop. Different microgrid configurations are also investigated and compared in terms of cost-effectiveness.
展开▼