首页> 外文OA文献 >Comparison of Geometric Optimization Methods with Multiobjective Genetic Algorithms for Solving Integrated Optimal Design Problemsud
【2h】

Comparison of Geometric Optimization Methods with Multiobjective Genetic Algorithms for Solving Integrated Optimal Design Problemsud

机译:解决集成优化设计问题的几何优化方法与多目标遗传算法的比较 ud

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, system design methodologies for optimizing heterogenous power devices in electrical engineering are investigated. The concept of Integrated Optimal Design (IOD) is presented and a simplified but typical example is given. It consists in finding Pareto-optimal configurations for the motor drive of an electric vehicle. For that purpose, a geometric optimization method (i.e the Hooke and Jeeves minimization procedure) associated with an objective weighting sum and a Multiobjective Genetic Algorithm (i.e. the NSGA-II) are compared. Several performance issues are discussed such as the accuracy in the determination of Pareto-optimal configurations and the capability to well spread these solutions in the objective space.
机译:本文研究了用于优化电气工程中的异构功率器件的系统设计方法。提出了集成优化设计(IOD)的概念,并给出了一个简化但典型的示例。它在于找到电动车辆的电动机驱动的帕累托最优配置。为此,比较了与目标加权和相关联的几何优化方法(即胡克和吉夫斯最小化程序)和多目标遗传算法(即NSGA-II)。讨论了一些性能问题,例如确定Pareto最优配置的准确性以及在目标空间中很好地扩展这些解决方案的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号