We conducted micromagnetic numerical studies on the strong radiation of spin waves (SWs) produced by the magnetic-field-induced reversal of a magnetic vortex core, as well as their wave behaviors in magnetic nanowires. It was found that the radial SWs can be emitted intensively from a vortex core in a circular dot by virtue of localized large torques employed at the core, and then can be injected into a long nanowire via their contact. These SWs exhibit wave characteristics such as propagation, reflection, transmission, interference, and dispersion. These results offer a preview of the generation, delivery, and manipulation of SWs in magnetic elements, which are applicable to information-signal processing in potential SW devices.
展开▼