首页> 外文OA文献 >Swarm intelligent optimisation based stochastic programming model for dynamic asset allocation
【2h】

Swarm intelligent optimisation based stochastic programming model for dynamic asset allocation

机译:基于群体智能优化的动态资产分配随机规划模型

摘要

Asset allocation is critical for the portfolio management process. In this paper, we solve a dynamic asset allocation problem through a multiperiod stochastic programming model. The objective is to maximise the expected utility of wealth at the end of the planning periods. To improve the optimisation result of the model, we employ swarm intelligent optimisers, the Bacterial Foraging Optimisation (BFO) algorithm and the Particle Swarm Optimisation (PSO) algorithm. A hybrid optimiser using the Bacterial Foraging Optimisation algorithm for initialisation and the Sequential Quadratic Programming (SQP) for local search is also suggested. The results are compared with the standard-alone SQP and the canonical Genetic Algorithm. The numerical results suggest the hybrid method provides better result, with improved accuracy, stability and computing speed than using BFO, PSO, GA, or SQP alone.
机译:资产分配对于投资组合管理过程至关重要。在本文中,我们通过多周期随机规划模型解决了动态资产分配问题。目的是在计划期末使财富的预期效用最大化。为了提高模型的优化结果,我们采用了群体智能优化器,细菌觅食优化(BFO)算法和粒子群优化(PSO)算法。还提出了使用细菌觅食优化算法进行初始化和使用顺序二次规划(SQP)进行本地搜索的混合优化器。将结果与单独的标准SQP和规范遗传算法进行比较。数值结果表明,与单独使用BFO,PSO,GA或SQP相比,混合方法可提供更好的结果,并具有更高的准确性,稳定性和计算速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号