首页> 外文OA文献 >Toward Precision Psychiatry: Statistical Platform for the Personalized Characterization of Natural Behaviors.
【2h】

Toward Precision Psychiatry: Statistical Platform for the Personalized Characterization of Natural Behaviors.

机译:迈向精确精神病学:自然行为个性化表征的统计平台。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is a critical need for new analytics to personalize behavioral data analysis across different fields, including kinesiology, sports science, and behavioral neuroscience. Specifically, to better translate and integrate basic research into patient care, we need to radically transform the methods by which we describe and interpret movement data. Here, we show that hidden in the “noise,” smoothed out by averaging movement kinematics data, lies a wealth of information that selectively differentiates neurological and mental disorders such as Parkinson’s disease, deafferentation, autism spectrum disorders, and schizophrenia from typically developing and typically aging controls. In this report, we quantify the continuous forward-and-back pointing movements of participants from a large heterogeneous cohort comprising typical and pathological cases. We empirically estimate the statistical parameters of the probability distributions for each individual in the cohort and report the parameter ranges for each clinical group after characterization of healthy developing and aging groups. We coin this newly proposed platform for individualized behavioral analyses “precision phenotyping” to distinguish it from the type of observational–behavioral phenotyping prevalent in clinical studies or from the “one-size-fits-all” model in basic movement science. We further propose the use of this platform as a unifying statistical framework to characterize brain disorders of known etiology in relation to idiopathic neurological disorders with similar phenotypic manifestations.
机译:迫切需要新的分析方法来个性化跨不同领域的行为数据分析,包括运动机能学,运动科学和行为神经科学。具体来说,为了更好地将基础研究转化和整合到患者护理中,我们需要彻底改变描述和解释运动数据的方法。在这里,我们显示出隐藏在“噪声”中的信息(通过平均运动运动数据来进行平滑处理)包含大量信息,这些信息有选择地将神经系统和精神疾病(例如帕金森氏病,脱咖啡因,自闭症谱系障碍和精神分裂症)与典型的发展性和典型性区别开来。老化控制。在本报告中,我们对来自典型案例和病理案例的大型异质队列中参与者的连续向前和向后指点运动进行了量化。我们根据经验估计队列中每个个体的概率分布的统计参数,并在表征健康的发育和衰老组之后报告每个临床组的参数范围。我们为这个新提出的平台进行了个性化的行为分析“精确表型”,以区别于临床研究中普遍的观察-行为表型类型或基础运动科学中的“千篇一律”模型。我们进一步建议使用该平台作为统一的统计框架,以表征与具有相似表型表现的特发性神经系统疾病相关的已知病因的脑部疾病。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号