首页> 外文OA文献 >A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria
【2h】

A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria

机译:恶性疟原虫疟疾中青蒿素耐药的分子机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Artemisinins are the cornerstone of anti-malarial drugs. Emergence and spread of resistance to them raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination.
机译:青蒿素是抗疟疾药物的基石。对它们的抗药性的出现和传播增加了抹去近期在减轻全球疟疾负担方面取得的成就的风险,并威胁到未来在全球范围内对疟疾的控制和消除。全基因组关联研究(GWAS)已发现与青蒿素耐药相关的寄生虫遗传基因座。但是,关于青蒿素的生化靶标尚无共识。这些靶标是否与GWAS鉴定的基因相互作用以及如何相互作用尚不清楚。在这里,我们提供生化和细胞学证据,表明青蒿素是恶性疟原虫磷脂酰肌醇3-激酶(PfPI3K)的有效抑制剂,揭示了意想不到的作用机制。在耐药的临床菌株中,PfPI3K的增加与青蒿素耐药性的主要标志恶性疟原虫Kelch13(PfKelch13)中的C580Y突变有关。 PfKelch13突变减少了PfPI3K的多聚泛素化及其与PfKelch13的结合,该突变限制了PfPI3K的蛋白水解作用,从而增加了激酶的水平,以及其脂质产物磷脂酰肌醇-3-磷酸酯(PI3P)。我们发现PI3P水平可预测临床和工程实验室寄生虫以及非同基因菌株中的青蒿素耐药性。在没有PfKelch13突变的情况下,PI3P诱导的青蒿素耐药性升高,但仍对PfKelch13的调节反应。提供了PI3P依赖性信号传导的证据,其中另外的激酶的转基因表达赋予了抗性。这些数据共同表明,PI3P是青蒿素耐药性的关键介体,而唯一的PfPI3K是消除疟疾的重要目标。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号