首页> 外文OA文献 >A hidden markov model for haplotype inference for present-absent data of clustered genes using identified haplotypes and haplotype patterns
【2h】

A hidden markov model for haplotype inference for present-absent data of clustered genes using identified haplotypes and haplotype patterns

机译:使用识别出的单倍型和单倍型模式对聚类基因的当前数据进行单倍型推断的隐藏马尔可夫模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The majority of killer cell immunoglobin-like receptor (KIR) genes are detected as either present or absent using locus-specific genotyping technology. Ambiguity arises from the presence of a specific KIR gene since the exact copy number (one or two) of that gene is unknown. Therefore, haplotype inference for these genes is becoming more challenging due to such large portion of missing information. Meantime, many haplotypes and partial haplotype patterns have been previously identified due to tight linkage disequilibrium (LD) among these clustered genes thus can be incorporated to facilitate haplotype inference. In this paper, we developed a hidden Markov model (HMM) based method that can incorporate identified haplotypes or partial haplotype patterns for haplotype inference from present-absent data of clustered genes (e.g., KIR genes). We compared its performance with an expectation maximization (EM) based method previously developed in terms of haplotype assignments and haplotype frequency estimation through extensive simulations for KIR genes. The simulation results showed that the new HMM based method outperformed the previous method when some incorrect haplotypes were included as identified haplotypes and/or the standard deviation of haplotype frequencies were small. We also compared the performance of our method with two methods that do not use previously identified haplotypes and haplotype patterns, including an EM based method, HPALORE, and a HMM based method, MaCH. Our simulation results showed that the incorporation of identified haplotypes and partial haplotype patterns can improve accuracy for haplotype inference. The new software package HaploHMM is available and can be downloaded at http://www.soph.uab.edu/ssg/files/People/KZhang/HaploHMM/haplohmm-index.html.
机译:使用特定于基因的基因分型技术,可以检测到大多数杀伤细胞免疫球蛋白样受体(KIR)基因存在或不存在。由于特定KIR基因的存在,模棱两可,因为该基因的确切拷贝数(一个或两个)是未知的。因此,由于如此大量的信息缺失,对这些基因的单倍型推断变得更具挑战性。同时,由于这些聚类基因之间的紧密连锁不平衡(LD),先前已经鉴定出许多单倍型和部分单倍型模式,因此可以掺入以促进单倍型推断。在本文中,我们开发了一种基于隐马尔可夫模型(HMM)的方法,该方法可以结合已鉴定的单倍型或部分单倍型模式,以从目前不存在的聚类基因(例如KIR基因)数据中推断出单倍型。我们将其性能与先前通过基于KIR基因的大量模拟在单倍型分配和单倍型频率估计方面开发的基于期望最大化(EM)的方法进行了比较。仿真结果表明,当包含一些不正确的单倍型时,新的基于HMM的方法优于先前的方法,因为已识别的单倍型和/或单倍型频率的标准偏差较小。我们还比较了我们的方法与不使用先前确定的单倍型和单倍型模式的两种方法的性能,包括基于EM的方法HPALORE和基于HMM的方法MaCH。我们的仿真结果表明,将识别出的单倍型和部分单倍型模式结合可以提高单倍型推断的准确性。新软件包HaploHMM可用,可以从http://www.soph.uab.edu/ssg/files/People/KZhang/HaploHMM/haplohmm-index.html下载。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号