首页> 外文OA文献 >Wavelet Decomposition for the Detection and Diagnosis of Faults in Rolling Element Bearings
【2h】

Wavelet Decomposition for the Detection and Diagnosis of Faults in Rolling Element Bearings

机译:小波分解在滚动轴承故障检测与诊断中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Condition monitoring and fault diagnosis of equipment and processes are of great concern in industries. Early fault detection in machineries can save millions of dollars in emergency maintenance costs. This paper presents a wavelet-based analysis technique for the diagnosis of faults in rotating machinery from its mechanical vibrations. The choice between the discrete wavelet transform and the discrete wavelet packet transform is discussed, along with the choice of the mother wavelet and some of the common extracted features. It was found that the peak locations in spectrum of the vibration signal could also be efficiently used in the detection of a fault in ball bearings. For the identification of fault location and its size, best results were obtained with the root mean square extracted from the terminal nodes of a wavelet tree of Symlet basis fed to Bayesian classier.
机译:设备和过程的状态监视和故障诊断在行业中非常重要。机械中的早期故障检测可以节省数百万美元的紧急维护成本。本文提出了一种基于小波分析技术的旋转机械故障诊断方法。讨论了离散小波变换和离散小波包变换之间的选择,以及母小波的选择和一些常见的提取特征。已经发现,振动信号频谱中的峰值位置也可以有效地用于检测球轴承中的故障。为了确定故障的位置和大小,使用从Symlet基小波树的末端节点提取的均方根并馈入贝叶斯分类器可获得最佳结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号