首页> 外文OA文献 >Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law
【2h】

Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law

机译:使用树形张量网络的二维量子系统仿真,该树张量网络利用熵区定律

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work explores the use of a tree tensor network ansatz to simulate the ground state of a local Hamiltonian on a two-dimensional lattice. By exploiting the entropic area law, the tree tensor network ansatz seems to produce quasiexact results in systems with sizes well beyond the reach of exact diagonalization techniques. We describe an algorithm to approximate the ground state of a local Hamiltonian on a L×L lattice with the topology of a torus. Accurate results are obtained for L={4,6,8}, whereas approximate results are obtained for larger lattices. As an application of the approach, we analyze the scaling of the ground-state entanglement entropy at the quantum critical point of the model. We confirm the presence of a positive additive constant to the area law for half a torus. We also find a logarithmic additive correction to the entropic area law for a square block. The single copy entanglement for half a torus reveals similar corrections to the area law with a further term proportional to 1/L.
机译:这项工作探索了使用树张量网络ansatz在二维晶格上模拟局部哈密顿量的基态。通过利用熵区定律,树张量网络ansatz似乎在尺寸远远超出精确对角化技术范围的系统中产生准精确结果。我们描述了一种算法,该算法利用环面拓扑在L×L晶格上近似局部哈密顿量的基态。对于L = {4,6,8},可获得准确的结果,而对于较大的晶格,则可获得近似的结果。作为该方法的应用,我们分析了模型量子临界点的基态纠缠熵的缩放。我们确认半圆环面积法则存在正加性常数。我们还发现对平方块的熵区定律进行对数加法校正。半圆环的单拷贝纠缠显示出与面积定律相似的更正,进一步的项与1 / L成比例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号