首页> 外文OA文献 >Emotional voice conversion using neural networks with arbitrary scales F0 based on wavelet transform
【2h】

Emotional voice conversion using neural networks with arbitrary scales F0 based on wavelet transform

机译:基于小波变换的任意尺度F0神经网络的情感语音转换

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An artificial neural network is an important model for training features of voice conversion (VC) tasks. Typically, neural networks (NNs) are very effective in processing nonlinear features, such as Mel Cepstral Coefficients (MCC), which represent the spectrum features. However, a simple representation of fundamental frequency (F0) is not enough for NNs to deal with emotional voice VC. This is because the time sequence of F0 for an emotional voice changes drastically. Therefore, in our previous method, we used the continuous wavelet transform (CWT) to decompose F0 into 30 discrete scales, each separated by one third of an octave, which can be trained by NNs for prosody modeling in emotional VC. In this study, we propose the arbitrary scales CWT (AS-CWT) method to systematically capture F0 features of different temporal scales, which can represent different prosodic levels ranging from micro-prosody to sentence levels. Meanwhile, the proposed method uses deep belief networks (DBNs) to pre-train the NNs that then convert spectral features. By utilizing these approaches, the proposed method can change the spectrum and the F0 for an emotional voice simultaneously as well as outperform other state-of-the-art methods in terms of emotional VC.
机译:人工神经网络是用于训练语音转换(VC)任务功能的重要模型。通常,神经网络(NN)在处理非线性特征(例如代表频谱特征的梅尔倒谱系数(MCC))时非常有效。然而,基本频率(F0)的简单表示不足以使NN处理情感语音VC。这是因为情感声音的F0时序急剧变化。因此,在我们以前的方法中,我们使用连续小波变换(CWT)将F0分解为30个离散的音阶,每个音阶之间相距一个八度音阶,这些音阶可以由NN进行训练,用于情感VC中的韵律建模。在这项研究中,我们提出了任意量表CWT(AS-CWT)方法来系统地捕获不同时间量表的F0特征,这些特征可以代表从微韵律到句子水平的不同韵律水平。同时,提出的方法使用深度信念网络(DBN)对神经网络进行预训练,然后再转换频谱特征。通过利用这些方法,所提出的方法可以同时改变情感语音的频谱和F0,并且在情感VC方面优于其他最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号