首页> 外文OA文献 >Carbon monoxide binding to the heme group at the dimeric interface modulates structure and copper accessibility in the Cu,Zn superoxide dismutase from Haemophilus ducreyi: in silico and in vitro evidences.
【2h】

Carbon monoxide binding to the heme group at the dimeric interface modulates structure and copper accessibility in the Cu,Zn superoxide dismutase from Haemophilus ducreyi: in silico and in vitro evidences.

机译:一氧化碳在二聚体界面处与血红素基团的结合可调节杜克嗜血杆菌的Cu,Zn超氧化物歧化酶的结构和铜可及性:计算机和体外证据。

摘要

X-ray absorption near-edge structure (XANES) spectroscopy and molecular dynamics (MD) simulations have been jointly applied to the study of the Cu,Zn superoxide dismutase from Haemophilus ducreyi (HdSOD) in interaction with the carbon monoxide molecule. The configurational flexibility of the Fe(II)-heme group, intercalated between the two subunits, has been sampled by MD simulations and included in the XANES data analysis without optimization in the structural parameter space. Our results provide an interpretation of the observed discrepancy in the Fe-heme distances as detected by extended X-ray absorption fine structure (EXAFS) spectroscopy and the classical XANES analysis, in which the structural parameters are optimized in a unique structure. Moreover, binding of the CO molecule to the heme induces a long range effect on the Cu,Zn active site, as evidenced by both MD simulations and in vitro experiments. MD simulation of the CO bound system, in fact, highlighted a structural rearrangement of the protein-protein hydrogen bond network in the region of the Cu,Zn active site, correlated with an increase in water accessibility at short distance from the copper atom. In line, in vitro experiments evidenced an increase of copper accessibility to a chelating agent when the CO molecule binds to the heme group, as compared to a heme deprived HdSOD. Altogether, our results support the hypothesis that the HdSOD is a heme-sensor protein, in which binding to small gaseous molecules modulates the enzyme superoxide activity as an adaptive response to the bacterial environment.
机译:X射线吸收近边缘结构(XANES)光谱和分子动力学(MD)模拟已联合应用于研究杜克嗜血杆菌(HdSOD)与一氧化碳分子相互作用的铜,锌超氧化物歧化酶。 Fe(II)-血红素基团的构型灵活性插入两个亚基之间,已通过MD模拟进行采样,并包含在XANES数据分析中,而没有在结构参数空间中进行优化。我们的结果提供了通过扩展X射线吸收精细结构(EXAFS)光谱和经典XANES分析检测到的铁血红素距离差异的解释,其中在独特的结构中优化了结构参数。此外,如MD模拟和体外实验所证明的,CO分子与血红素的结合对Cu,Zn活性位点产生了远距离影响。实际上,CO结合系统的MD模拟突出显示了Cu-Zn活性位点区域中蛋白质-蛋白质氢键网络的结构重排,与距铜原子短距离的水可及性增加相关。在线上,体外实验表明,与缺少血红素的HdSOD相比,当CO分子与血红素基团结合时,铜对螯合剂的可及性增加。总之,我们的研究结果支持了HdSOD是一种血红素传感器蛋白的假设,其中与小气态分子的结合可调节超氧化物酶活性,作为对细菌环境的适应性反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号