首页> 外文OA文献 >Tropospheric ozone column retrieval at northern mid-latitudes from the Ozone Monitoring Instrument by means of a neural network algorithm
【2h】

Tropospheric ozone column retrieval at northern mid-latitudes from the Ozone Monitoring Instrument by means of a neural network algorithm

机译:利用神经网络算法从臭氧监测仪中提取北半球对流层臭氧柱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Monitoring tropospheric ozone from space is of critical importance in order to gain more thorough knowledgeudon phenomena affecting air quality and the greenhouse effect. Deriving information on tropospheric ozone fromudUV/VIS nadir satellite spectrometers is difficult owing to the weak sensitivity of the measured radiance spectra to variations of ozone in the troposphere. Here we propose an alternative method of analysis to retrieve tropospheric ozone columns from Ozone Monitoring Instrument radiances by means of a neural network algorithm. An extended set of ozone sonde measurements at northern mid-latitudes for the years 2004–2008 has been considered as the training and test data set. The design of the algorithm is extensively discussed.udOur retrievals are compared to both tropospheric ozone residuals and optimal estimation retrievals over a similar independent test data set. Results show that our algorithm has comparable accuracy with respect to both correlative methods and its performance is slightly better over a subset containing only European ozone sonde stations. Possible sources of errors are analyzed. Finally, the capabilities of our algorithm to derive information on boundary layer ozone are studied and the results critically discussed.
机译:从太空监测对流层臭氧至关重要,以获取更透彻的知识/乌冬现象,影响空气质量和温室效应。由于测得的辐射光谱对对流层臭氧变化的敏感性较弱,因此很难从 udUV / VIS天底卫星光谱仪获得对流层臭氧的信息。在这里,我们提出了一种替代的分析方法,即通过神经网络算法从臭氧监测仪器的辐射中检索对流层臭氧柱。在2004-2008年间,北纬中纬度的臭氧探空仪测量数据集被认为是训练和测试数据集。该算法的设计已得到广泛讨论。结果表明,相对于两种相关方法,我们的算法具有可比的准确性,并且在仅包含欧洲臭氧探测站的子集中,其性能稍好一些。分析了可能的错误来源。最后,研究了我们算法导出边界层臭氧信息的能力,并对结果进行了严格的讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号