首页> 外文OA文献 >Comparison of two different classifiers for mental tasks-based Brain-Computer Interface: MLP Neural Networks vs. Fuzzy Logic
【2h】

Comparison of two different classifiers for mental tasks-based Brain-Computer Interface: MLP Neural Networks vs. Fuzzy Logic

机译:基于心理任务的脑机接口的两种不同分类器的比较:MLP神经网络与模糊逻辑

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study is devoted to the classification of fourclassudmental tasks data for a Brain-Computer Interfaceudprotocol. In such view we adopted Multi LayerudPerceptron Neural Network (MLP) and Fuzzy C-means analysis for classifying: left and right hand movement imagination, mental subtraction operation and mental recitation of a nursery rhyme.udFive subjects participated to the experiment in two sessions recorded in distinct days. Different parameters were considered for the evaluation of the performances of the two classifiers: accuracy, that is, percentage of correct classifications, training time and size of the training dataset. The results show that even if the accuracies of the two classifiers are quite similar, the MLP classifier needs a smaller training set to reach them with respect to the Fuzzy one. This leads to the preference of MLP for the classification ofudmental tasks in Brain Computer Interface protocols.
机译:这项研究致力于脑/计算机接口 udprotocol的四类 umental任务数据的分类。在这种情况下,我们采用了多层 udPerceptron神经网络(MLP)和模糊C均值分析进行分类:左手和右手的运动想象力,智力减法操作和童谣的心理背诵。 ud五个受试者参加了两个实验在不同的日子记录的会话。为评估两个分类器的性能考虑了不同的参数:准确性,即正确分类的百分比,训练时间和训练数据集的大小。结果表明,即使两个分类器的准确性非常相似,MLP分类器也需要相对于模糊分类器而言更小的训练集来达到它们。这导致MLP在脑计算机接口协议中优先选择 umental任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号