首页> 外文OA文献 >Behaviour recognition and monitoring of the elderly using wearable wireless sensors. Dynamic behaviour modelling and nonlinear classification methods and implementation.
【2h】

Behaviour recognition and monitoring of the elderly using wearable wireless sensors. Dynamic behaviour modelling and nonlinear classification methods and implementation.

机译:使用可穿戴无线传感器对老年人的行为进行识别和监控。动态行为建模和非线性分类方法及实现。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In partnership with iMonSys - an emerging company in the passive care field - a new system, 'Verity', is being developed to fulfil the role of a passive behaviour monitoring and alert detection device, providing an unobtrusive level of care and assessing an individual's changing behaviour and health status whilst still allowing for independence of its elderly user. In this research, a Hidden Markov Model incorporating Fuzzy Logic-based sensor fusion is created for the behaviour detection within Verity, with a method of Fuzzy-Rule induction designed for the system's adaptation to a user during operation. A dimension reduction and classification scheme utilising Curvilinear Distance Analysis is further developed to deal with the recognition task presented by increasingly nonlinear and high dimension sensor readings, and anomaly detection methods situated within the Hidden Markov Model provide possible solutions to identification of health concerns arising from independent living. Real-time implementation is proposed through development of an Instance Based Learning approach in combination with a Bloom Filter, speeding up the classification operation and reducing the storage requirements for the considerable amount of observation data obtained during operation. Finally, evaluation of all algorithms is completed using a simulation of the Verity system with which the behaviour monitoring task is to be achieved.
机译:与被动医疗领域的新兴公司iMonSys合作,正在开发一种新系统'Verity',以履行被动行为监控和警报检测设备的作用,提供不干扰的医疗水平并评估个人的变化行为和健康状况,同时仍然允许其老年用户独立。在这项研究中,创建了一种结合了基于模糊逻辑的传感器融合的隐马尔可夫模型,用于Verity内的行为检测,并采用了一种模糊规则诱导方法来设计系统在运行过程中适应用户的行为。进一步开发了利用曲线距离分析的降维和分类方案,以应对越来越多的非线性和高维传感器读数所带来的识别任务,而隐马尔可夫模型中的异常检测方法为识别由独立引起的健康问题提供了可能的解决方案活的。通过开发基于实例的学习方法与布隆过滤器相结合,提出了一种实时实现方法,该方法可加快分类操作并降低操作期间获得的大量观测数据的存储要求。最后,使用Verity系统的仿真完成所有算法的评估,并通过该仿真来完成行为监控任务。

著录项

  • 作者

    Winkley Jonathan James;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号