首页> 外文OA文献 >Polyethylene Terephthalate / clay nanocomposites. Compounding, fabrication and characterisation of the thermal, rheological, barrier and mechanical properties of Polyethylene Terephthalate / clay nanocomposites.
【2h】

Polyethylene Terephthalate / clay nanocomposites. Compounding, fabrication and characterisation of the thermal, rheological, barrier and mechanical properties of Polyethylene Terephthalate / clay nanocomposites.

机译:聚对苯二甲酸乙二酯/粘土纳米复合材料。聚对苯二甲酸乙二酯/粘土纳米复合材料的热,流变,阻隔和机械性能的复合,制造和表征。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Polyethylene Terephthalate (PET) is one of the most important polymers in use today for packaging due to its outstanding properties. The usage of PET has grown at the highest rate compared with other plastic packaging over the last 20 years, and it is anticipated that the increase in global demand will be around 6% in the 2010 ¿ 2015 period.udThe rheological behaviour, thermal properties, tensile modulus, permeability properties and degradation phenomena of PET/clay nanocomposites have been investigated in this project. An overall, important finding is that incorporation of nanoclays in PET gives rise to improvements in several key process and product parameters together ¿ processability/ reduced process energy, thermal properties, barrier properties and stiffness. The PET pellets have been compounded with carefully selected nanoclays (Somasif MAE, Somasif MTE and Cloisite 25A) via twin screw extrusion to produce PET/clay nanocomposites at various weight fractions of nanoclay (1, 3, 5, 20 wt.%). The nanoclays vary in the aspect ratio of the platelets, surfactant and/or gallery spacing so different effect are to be expected. The materials were carefully prepared prior to processing in terms of sufficient drying and re-crystallisation of the amorphous pellets as well as the use of dual motor feeders for feeding the materials to the extruder.udThe rheological properties of PET melts have been found to be enhanced by decreasing the viscosity of the PET i.e. increasing the ¿flowability¿ of the PET melt during the injection or/and extrusion processes. The apparent shear viscosity of PETNCs is show to be significantly lower than un-filled PET at high shear rates. The viscosity exhibits shear thinning behaviour which can be explained by two mechanisms which can occur simultaneously. The first mechanism proposed is that some polymer has entangled and few oriented molecular chain at rest and when applying high shear rates, the level of entanglements is reduced and the molecular chains tend to orient with the flow direction. The other mechanism is that the nanoparticles align with the flow direction at high shear rates. At low shear rate, the magnitudes of the shear viscosity are dependent on the nanoclay concentrations and processing shear rate. Increasing nanoclay concentration leads to increases in shear viscosity. The viscosity was observed to deviate from Newtonian behaviour and exhibited shear thinning at a 3 wt.% concentration. It is possible that the formation of aggregates of clay is responsible for an increase in shear viscosity. Reducing the shear viscosity has positive benefits for downstream manufacturers by reducing power consumption. It was observed that alludiiudthree nanoclays used in this project act as nucleation agents for crystallisation by increasing the crystallisation temperature from the melt and decreasing the crystallisation temperature from the solid and increasing the crystallisation rate, while retaining the melt temperature and glass transition temperatures without significant change. This enhancement in the thermal properties leads to a decrease in the required cycle time for manufacturing processes thus potentially reducing operational costs and increasing production output.udIt was observed that the nanoclay significantly enhanced the barrier properties of the PET film by up to 50% this potentially allows new PET packaging applications for longer shelf lives or high gas pressures.udPET final products require high stiffness whether for carbonated soft drinks or rough handling during distribution. The PET/Somasif nanocomposites exhibit an increase in the tensile modulus of PET nanocomposite films by up to 125% which can be attributed to many reasons including the good dispersion of these clays within the PET matrix as shown by TEM images as well as the good compatibility between the PET chains and the Somasif clays. The tensile test results for the PET/clay nanocomposites micro-moulded samples shows that the injection speed is crucial factor affecting the mechanical properties of polymer injection moulded products.
机译:聚对苯二甲酸乙二酯(PET)由于其出色的性能而成为当今用于包装的最重要的聚合物之一。在过去的20年中,与其他塑料包装相比,PET的使用增长率最高。预计在2010年至2015年期间,全球需求的增长将约为6%。 ud流变行为,热性能在这个项目中,已经研究了PET /粘土纳米复合材料的拉伸模量,渗透性和降解现象。总的来说,重要的发现是在PET中掺入纳米粘土可以改善几个关键的工艺和产品参数,包括可加工性/降低的加工能量,热性能,阻隔性能和刚度。通过双螺杆挤出将PET粒料与精心选择的纳米粘土(Somasif MAE,Somasif MTE和Cloisite 25A)混合,以不同重量分数的纳米粘土(1、3、5、20 wt%)生产PET /粘土纳米复合材料。纳米粘土在血小板的纵横比,表面活性剂和/或通道间距方面是不同的,因此预期会有不同的效果。在加工之前,要对材料进行仔细的准备,以确保无定形颗粒的充分干燥和重结晶,以及使用双电机进料器将材料进料到挤出机中。 ud发现PET熔体的流变性是通过降低PET的粘度(即在注射或/和挤出过程中提高PET熔体的“流动性”)来增强性能。在高剪切速率下,PETNCs的表观剪切粘度显着低于未填充的PET。粘度表现出剪切稀化行为,这可以通过同时发生的两种机理来解释。提出的第一个机理是,一些聚合物在静止状态下缠结在一起,几乎没有取向分子链,当施加高剪切速率时,缠结程度降低,分子链趋向于流动方向。另一个机理是纳米颗粒在高剪切速率下与流动方向对齐。在低剪切速率下,剪切粘度的大小取决于纳米粘土的浓度和加工剪切速率。纳米粘土浓度的增加导致剪切粘度的增加。观察到粘度偏离牛顿行为,并且在3重量%浓度下表现出剪切稀化。粘土聚集体的形成可能导致剪切粘度的增加。通过降低功耗,降低剪切粘度对下游制造商具有积极的好处。观察到,在该项目中使用的所有 di uuu n n三种粘土都可以通过增加熔体的结晶温度,降低固体的结晶温度和提高结晶速率来充当结晶的成核剂,同时保持熔体温度和玻璃化转变温度没有明显变化。热性能的这种提高导致制造过程所需的周期时间减少,从而潜在地降低了运营成本并提高了生产产量。 ud已观察到,纳米粘土显着提高了PET薄膜的阻隔性能达50%。 udPET最终产品无论是碳酸软饮料还是配送过程中的粗糙处理,都需要很高的刚度。 PET / Somasif纳米复合材料的PET纳米复合材料薄膜的拉伸模量提高了高达125%,这可以归因于许多原因,包括这些粘土在TEM图像中的良好分散性(如TEM图像所示)以及良好的相容性在PET链和Somasif粘土之间。 PET /粘土纳米复合材料微模塑样品的拉伸试验结果表明,注射速度是影响聚合物注射成型产品机械性能的关键因素。

著录项

  • 作者

    Al-Fouzan Abdulrahman M.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号