首页> 外文OA文献 >Automatic nesting seabird detection based on boosted HOG-LBP descriptors
【2h】

Automatic nesting seabird detection based on boosted HOG-LBP descriptors

机译:基于增强的HOG-LBP描述符的自动嵌套海鸟检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Seabird populations are considered an important and accessible indicator of the health of marine environments: variations have been linked with climate change and pollution 1. However, manual monitoring of large populations is labour-intensive, and requires significant investment of time and effort. In this paper, we propose a novel detection system for monitoring a specific population of Common Guillemots on Skomer Island, West Wales (UK). We incorporate two types of features, Histograms of Oriented Gradients (HOG) and Local Binary Pattern (LBP), to capture the edge/local shape information and the texture information of nesting seabirds. Optimal features are selected from a large HOG-LBP feature pool by boosting techniques, to calculate a compact representation suitable for the SVM classifier. A comparative study of two kinds of detectors, i.e., whole-body detector, head-beak detector, and their fusion is presented. When the proposed method is applied to the seabird detection, consistent and promising results are achieved. © 2011 IEEE.
机译:海鸟种群被认为是海洋环境健康的重要且易于获取的指标:变化已与气候变化和污染相关联1.但是,人工监测大量种群是劳动密集型的,需要大量的时间和精力投入。在本文中,我们提出了一种新颖的检测系统,用于监测西威尔士(英国)斯科默岛上的特定海雀科的特定种群。我们结合了两种类型的特征,即定向梯度直方图(HOG)和局部二值模式(LBP),以捕获边缘/局部形状信息和嵌套海鸟的纹理信息。通过提升技术从大型HOG-LBP特征库中选择最佳特征,以计算适合SVM分类器的紧凑表示形式。提出了两种检测器的比较研究,即全身检测器,头喙检测器及其融合。当将所提出的方法应用于海鸟检测时,可以获得一致且有希望的结果。 ©2011 IEEE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号