首页> 外文OA文献 >Exploiting the retinal vascular geometry in identifying the progression to diabetic retinopathy using penalized logistic regression and random forests
【2h】

Exploiting the retinal vascular geometry in identifying the progression to diabetic retinopathy using penalized logistic regression and random forests

机译:利用惩罚性Logistic回归和随机森林开发视网膜血管几何以识别糖尿病性视网膜病变的进展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many studies have been conducted, investigating the effects that diabetes has to the retinal vasculature. Identifying and quantifying the retinal vascular changes remains a very challenging task, due to the heterogeneity of the retina. Monitoring the progression requires follow-up studies of progressed patients, since human retina naturally adapts to many different stimuli, making it hard to associate any changes with a disease. In this novel study, data from twenty five diabetic patients, who progressed to diabetic retinopathy, were used. The progression was evaluated using multiple geometric features, like vessels widths and angles, tortuosity, central retinal artery and vein equivalent, fractal dimension, lacunarity, in addition to the corresponding descriptive statistics of them. A statistical mixed model design was used to evaluate the significance of the changes between two periods: 3 years before the onset of diabeticudretinopathy and the first year of diabetic retinopathy. Moreover, the discriminative power of these features was evaluated using a random forests classifier and also a penalized logistic regression. The area under the ROC curve after running a ten-fold cross validation was 0.7925 and 0.785 respectively.
机译:已经进行了许多研究,研究糖尿病对视网膜脉管系统的影响。由于视网膜的异质性,识别和量化视网膜血管变化仍然是一项非常艰巨的任务。监测进展情况需要对进展的患者进行随访研究,因为人的视网膜自然会适应多种不同的刺激,因此很难将任何变化与疾病联系起来。在这项新颖的研究中,使用了来自25位进展为糖尿病性视网膜病变的糖尿病患者的数据。使用多种几何特征(例如血管宽度和角度,曲折度,视网膜中央动脉和静脉当量,分形维数,腔隙性)以及相应的描述性统计量来评估进展。统计混合模型设计用于评估两个时期之间变化的显着性:糖尿病/糖尿病视网膜病变发作前三年和糖尿病性视网膜病变第一年。此外,使用随机森林分类器和惩罚逻辑回归来评估这些特征的判别力。经过十次交叉验证后,ROC曲线下的面积分别为0.7925和0.785。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号