首页> 外文OA文献 >Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of Bayesian filters
【2h】

Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of Bayesian filters

机译:使用移动机器人追踪人员的高效计算解决方案:贝叶斯滤波器的实验评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modern service robots will soon become an essential part of modern society. As they have to move and act in human environments, it is essential for them to be provided with a fast and reliable tracking system that localizes people in the neighbourhood. It is therefore important to select the most appropriate filter to estimate the position of these persons.udThis paper presents three efficient implementations of multisensor-human tracking based on different Bayesian estimators: Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Sampling Importance Resampling (SIR) particle filter. The system implemented on a mobile robot is explained, introducing the methods used to detect and estimate the position of multiple people. Then, the solutions based on the three filters are discussed in detail. Several real experiments are conducted to evaluate their performance, which is compared in terms of accuracy, robustness and execution time of the estimation. The results show that a solution based on the UKF can perform as good as particle filters and can be often a better choice when computational efficiency is a key issue.
机译:现代服务机器人将很快成为现代社会的重要组成部分。由于他们必须在人类环境中行动并行动,因此必须为他们提供快速可靠的跟踪系统,以将人们定位在附近地区。因此,选择最合适的滤波器来估计这些人员的位置非常重要。 ud本文介绍了基于不同贝叶斯估计器的多传感器-人类跟踪的三种有效实现方式:扩展卡尔曼滤波器(EKF),无味卡尔曼滤波器(UKF)和采样重要性重采样(SIR)粒子过滤器。解释了在移动机器人上实现的系统,介绍了用于检测和估计多人位置的方法。然后,详细讨论了基于这三个过滤器的解决方案。进行了几个真实的实验来评估其性能,并在估算的准确性,鲁棒性和执行时间方面进行比较。结果表明,基于UKF的解决方案的性能与粒子过滤器一样好,并且在计算效率成为关键问题时通常是更好的选择。

著录项

  • 作者

    Bellotto Nicola; Hu Huosheng;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号