首页> 外文OA文献 >Estimating gas turbine compressor discharge temperature using Bayesian neuro-fuzzy modelling
【2h】

Estimating gas turbine compressor discharge temperature using Bayesian neuro-fuzzy modelling

机译:使用贝叶斯神经模糊模型估算燃气轮机压缩机排气温度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this paper is to estimate the compressor discharge temperature measurements on an industrial gas turbine that is undergoing commissioning at site, using a data-driven model which is built using the test bed measurements of the engine. This paper proposes a Bayesian neuro-fuzzy modelling (BNFM) approach, which combines the adaptive neuro-fuzzy inference system (ANFIS) and variational Bayesian Gaussian mixture model (VBGMM) techniques. A data-driven compressor model is built using ANFIS, and VBGMM is applied in the set-up stage to automatically select the number of input membership functions in the fuzzy system. The efficacy of the proposed BFNM approach is established through experimental trials of a sub-15MW gas turbine, and the results, from the model that is built using test bed data, are shown to be promising for estimating the compressor discharge temperatures on the gas turbine during commissioning.
机译:本文的目的是使用数据驱动模型来估算正在现场调试的工业燃气轮机上的压缩机排气温度测量值,该模型是使用发动机的试验台测量值建立的。本文提出了一种贝叶斯神经模糊建模(BNFM)方法,该方法结合了自适应神经模糊推理系统(ANFIS)和变分贝叶斯高斯混合模型(VBGMM)技术。使用ANFIS构建数据驱动的压缩器模型,并在设置阶段应用VBGMM来自动选择模糊系统中输入隶属函数的数量。 BFNM方法的有效性是通过对15 MW以下的燃气轮机进行的试验试验确定的,使用测试床数据构建的模型的结果表明,该结果有望用于估算燃气轮机的压缩机排气温度在调试期间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号