首页> 外文OA文献 >Incipient fault diagnosis of roller bearing using optimized wavelet transform based multi-speed vibration signatures
【2h】

Incipient fault diagnosis of roller bearing using optimized wavelet transform based multi-speed vibration signatures

机译:基于优化小波变换的多速振动信号诊断滚动轴承早期故障

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Condition monitoring and incipient fault diagnosis of rolling bearing is of great importance to detect failures and ensure reliable operations in rotating machinery. In this paper, a new multi-speed fault diagnostic approach is presented by using self-adaptive wavelet transform components generated from bearing vibration signals. The proposed approach is capable of discriminating signatures from four conditions of rolling bearing, i.e. normal bearing and three different types of defected bearings on outer race, inner race and roller separately. Particle Swarm Optimization (PSO) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) based quasi-Newton minimization algorithms are applied to seek optimal parameters of Impulse Modelling based Continuous Wavelet Transform (IMCWT) model. Then, a three-dimensional feature space of the statistical parameters and a Nearest Neighbor (NN) classifier are respectively applied for fault signature extraction and fault classification. Effectiveness of this approach is then evaluated, and the results have achieved an overall accuracy of 100%. Moreover, the generated discriminatory fault signatures are suitable for multi-speed fault data sets. This technique will be further implemented and tested in a real industrial environment.
机译:滚动轴承的状态监测和早期故障诊断对于检测故障并确保旋转机械的可靠运行非常重要。本文利用轴承振动信号产生的自适应小波变换分量,提出了一种新的多速故障诊断方法。所提出的方法能够从滚动轴承的四个条件即正常轴承和分别在外座圈,内座圈和滚子上的三种不同类型的有缺陷轴承中区分出特征。基于粒子群优化(PSO)和基于Broyden-Fletcher-Goldfarb-Shanno(BFGS)的拟牛顿最小化算法,寻求基于冲激模型的连续小波变换(IMCWT)模型的最优参数。然后,将统计参数的三维特征空间和最近邻分类器分别应用于故障特征提取和故障分类。然后评估该方法的有效性,结果已达到100%的总体准确性。此外,所生成的鉴别性故障特征码适用于多速故障数据集。该技术将在实际的工业环境中进一步实施和测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号