Recognizing abnormal breathing activity fromudbody movement is a challenging task in machine vision. In this paper, we present a non-intrusive automatic video monitoring technique for detecting abnormal breathing activities and assisting in diagnosis of obstructive sleep apnoea. The proposed technique utilizes infrared video information and avoids imposing geometric or positional constraints on the patient. The technique also deals with fully or partially obscured patients’ body. A continuously updated breathing activity template is builtudfor distinguishing general body movement from breathingudbehavior.
展开▼