首页> 外文OA文献 >Polarised light stress analysis and laser scatter imaging for non-contact inspection of heat seals in food trays
【2h】

Polarised light stress analysis and laser scatter imaging for non-contact inspection of heat seals in food trays

机译:偏振光应力分析和激光散射成像,用于非接触式检查食品托盘中的热封

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper introduces novel non-contact methods for detecting faults in heat seals of food packages. Two alternative imaging technologies are investigated; laser scatter imaging and polarised light stress images. After segmenting the seal area from the rest of the respective image, a classifier is trained to detect faults in different regions of the seal area using features extracted from the pixels in the respective region. A very large set of candidate features, based on statistical information relating to the colour and texture of each region, is first extracted. Then an adaptive boosting algorithm (AdaBoost) is used to automatically select the best features for discriminating faults from non-faults. With this approach, different features can be selected and optimised for the different imaging methods. In experiments we compare the performance of classifiers trained using features extracted from laser scatter images only, polarised light stress images only, and a combination of both image types. The results show that the polarised light and laser scatter classifiers achieved accuracies of 96% and 90%, respectively, while the combination of both sensors achieved an accuracy of 95%. These figures suggest that both systems have potential for commercial development.
机译:本文介绍了用于检测食品包装热封故障的新型非接触式方法。研究了两种替代成像技术;激光散射成像和偏振光应力图像。在从各个图像的其余部分分割出密封区域之后,训练分类器以使用从各个区域中的像素提取的特征来检测密封区域的不同区域中的故障。首先,基于与每个区域的颜色和纹理有关的统计信息,提取大量候选特征。然后,使用自适应升压算法(AdaBoost)自动选择最佳功能,以区分故障与非故障。使用这种方法,可以为不同的成像方法选择和优化不同的功能。在实验中,我们比较了仅使用从激光散射图像,仅偏光应力图像以及两种图像类型组合提取的特征训练的分类器的性能。结果表明,偏振光和激光散射分类器的准确度分别为96%和90%,而两个传感器的组合则达到了95%的精度。这些数字表明这两个系统都有商业开发的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号