首页> 外文OA文献 >Service-Oriented Architecture for High-Dimensional Private Data Mashup
【2h】

Service-Oriented Architecture for High-Dimensional Private Data Mashup

机译:高维私有数据混搭的面向服务的体系结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mashup is a web technology that allows different service providers to flexibly integrate their expertise and to deliver highly customizable services to their customers. Data mashup is a special type of mashup application that aims at integrating data from multiple data providers depending on the user's request. However, integrating data from multiple sources brings about three challenges: 1) Simply joining multiple private data sets together would reveal the sensitive information to the other data providers. 2) The integrated (mashup) data could potentially sharpen the identification of individuals and, therefore, reveal their person-specific sensitive information that was not available before the mashup. 3) The mashup data from multiple sources often contain many data attributes. When enforcing a traditional privacy model, such as K-anonymity, the high-dimensional data would suffer from the problem known as the curse of high dimensionality, resulting in useless data for further data analysis. In this paper, we study and resolve a privacy problem in a real-life mashup application for the online advertising industry in social networks, and propose a service-oriented architecture along with a privacy-preserving data mashup algorithm to address the aforementioned challenges. Experiments on real-life data suggest that our proposed architecture and algorithm is effective for simultaneously preserving both privacy and information utility on the mashup data. To the best of our knowledge, this is the first work that integrates high-dimensional data for mashup service.
机译:Mashup是一项网络技术,允许不同的服务提供商灵活地集成他们的专业知识,并向其客户提供高度可定制的服务。数据混搭是一种特殊的混搭应用程序,旨在根据用户的要求集成来自多个数据提供者的数据。但是,集成来自多个来源的数据带来了三个挑战:1)将多个私有数据集简单地结合在一起将向其他数据提供者揭示敏感信息。 2)集成(混搭)数据可能会增强对个人的识别,因此,可以揭示混搭之前无法获得的个人特定敏感信息。 3)来自多个源的混搭数据通常包含许多数据属性。当执行传统的隐私模型(例如K-匿名)时,高维数据将遭受称为高维诅咒的问题,从而导致无用的数据可用于进一步的数据分析。在本文中,我们研究和解决了社交网络中在线广告行业的现实mashup应用程序中的隐私问题,并提出了面向服务的体系结构以及隐私保护数据mashup算法,以解决上述挑战。在现实生活中的数据实验表明,我们提出的体系结构和算法可有效地同时保留mashup数据的隐私和信息实用性。据我们所知,这是将高维数据集成到mashup服务中的第一项工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号