首页> 外文OA文献 >Experimental investigations on thermal and hydrodynamic entrance regionis in microchannels using oPIV and TLC techniques
【2h】

Experimental investigations on thermal and hydrodynamic entrance regionis in microchannels using oPIV and TLC techniques

机译:利用oPIV和TLC技术对微通道中热力和水动力入口区域进行实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Micro-systems are expected to have abundant applicability in the biomedical industry, where operations such as medical diagnostics or DNA synthesis and sequencing, could potentially be carried out on a hand-held device. Fully integrated micro-systems consist of several processes needed to carry out the analysis, such as mixing, reaction, and detection. These systems are projected to have significant advantages over traditional testing methods, such as smaller footprint areas, portability, and shorter analysis times. Micro-systems are comprised of micro-devices, which perform the desired processes. Micro-devices themselves, such as micromixers or micro-heat exchangers, are an arrangement of microchannels, which span only a fraction of a millimeter. Consequently, microchannels have recently received much attention in the research community. Essential for advanced design applications are flow and heat transfer analyses of microchannels, which are used to transport fluid within micro-systems and their integrated components. The entrance region of a channel, where the flow is hydrodynamically, thermally, or simultaneously developing, is very important since the flow and heat transfer mechanisms are enhanced due to the developing nature of the flow. Through the use of state-of-the-art optical measurement techniques of micro-Particle Image Velocimetry (oPIV) and un-encapsulated Thermochromic Liquid Crystal (TLC) thermography, the hydrodynamic and thermal entrance regions in microchannels are experimentally investigated. New experimental data is obtained for both laminar and turbulent single-phase flow regimes, in microchannels ranging in hydraulic diameter from 100 om to 1 mm. To investigate the effects of dimensional scaling, the results are compared to the physical mechanisms, observations, and existing data for developing flows in conventionally-sized ducts and pipes. In addition, new empirical laminar entrance length correlations are proposed for microchannels. In microfluidic devices and systems, channel lengths are expected to be extremely short, in which case developing flow may dominate the flow field over the entire microchannel length. The present study broadens the knowledge into the mechanisms of developing flow and heat transfer in microchannels. With further understanding of micro flows through experimental evidence, the applicability of complete microfluidic systems can be realized on a practical level
机译:微型系统有望在生物医学行业中具有广泛的适用性,在该领域中,诸如医学诊断或DNA合成和测序等操作可能会在手持设备上进行。完全集成的微系统由执行分析所需的几个过程组成,例如混合,反应和检测。与传统的测试方法相比,这些系统具有显着的优势,例如更小的占位面积,可移植性以及更短的分析时间。微型系统由执行所需过程的微型设备组成。诸如微型混合器或微型热交换器之类的微型设备本身是微通道的布置,其仅跨越了几分之一毫米。因此,微通道最近在研究界引起了很多关注。对于高级设计应用而言,必不可少的是微通道的流动和传热分析,这些分析用于在微系统及其集成组件内传输流体。由于流体的流动性质,流动和传热机制得到增强,因此流体在流体动力学,热学或同时发展的通道的入口区域非常重要。通过使用最新的微颗粒图像测速(oPIV)光学测量技术和未封装的热致变色液晶(TLC)热成像技术,实验研究了微通道中的流体动力和热入射区域。在水力直径从100 om到1 mm的微通道中,获得了层流和湍流单相流态的新实验数据。为了研究尺寸缩放的影响,将结果与物理尺寸,观测结果和现有数据进行比较,以得出常规尺寸的管道中的流量。另外,针对微通道提出了新的经验层流入口长度相关性。在微流体装置和系统中,通道长度预计会非常短,在这种情况下,显影流可能会在整个微通道长度上占据主导地位。本研究将知识扩展到在微通道中发展流动和传热的机理。通过实验证据进一步了解微流,可以在实际水平上实现完整的微流系统的适用性

著录项

  • 作者

    Ahmad Tariq;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号