首页> 外文OA文献 >Spectral Geometric Methods for Deformable 3D Shape Retrieval
【2h】

Spectral Geometric Methods for Deformable 3D Shape Retrieval

机译:可变形3D形状检索的光谱几何方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As 3D applications ranging from medical imaging to industrial design continue to grow, so does the importance of developing robust 3D shape retrieval systems. A key issue in developing an accurate shape retrieval algorithm is to design an efficient shape descriptor for which an index can be built, and similarity queries can be answered efficiently. While the overwhelming majority of prior work on 3D shapeudanalysis has concentrated primarily on rigid shape retrieval, many real objects such as articulated motions of humans are nonrigid and hence can exhibit a variety of poses and deformations. In this thesis, we present novel spectral geometric methods for analyzing and distinguishing between deformable 3D shapes. First, we comprehensively review recent shape descriptors based on the spectral decomposition of the Laplace-Beltrami operator, which provides a rich set of eigenbases that are invariant to intrinsic isometries. Then we provide a general and flexible framework for the analysis and design of shape signatures from the spectral graph wavelet perspective. In a bid to capture the global and local geometry, we propose a multiresolution shape signature based on a cubic spline wavelet generating kernel. This signature delivers best-in-class shape retrieval performance. Second, we investigate the ambiguity modeling of codebook for the densely distributed low-level shape descriptors. Inspiredudby the ability of spatial cues to improve discrimination between shapes, we also propose to adopt the isocontours of the second eigenfunction of the Laplace-Beltrami operator to perform surface partition, which can significantly ameliorate the retrieval performance of the time-scaled local descriptors. To further enhance the shape retrieval accuracy, we introduce an intrinsic spatial pyramid matching approach. Extensive experiments are carried out on two 3D shape benchmarks to assess the performance of the proposed spectral geometric approaches in comparison with state-of-the-art methods.
机译:随着从医学成像到工业设计的3D应用不断增长,开发强大的3D形状检索系统的重要性也在不断提高。开发精确的形状检索算法的关键问题是设计一个有效的形状描述符,可以为其建立索引,并且可以有效地回答相似性查询。尽管绝大多数有关3D形状分析的先前工作主要集中在刚性形状检索上,但是许多真实对象(例如人为关节运动)是非刚性的,因此可以表现出各种姿势和变形。在本文中,我们提出了用于分析和区分可变形3D形状的新颖光谱几何方法。首先,我们基于Laplace-Beltrami算子的频谱分解全面回顾了最近的形状描述符,该算子提供了丰富的固有本构关系不变的特征基集。然后,我们从光谱图小波的角度为形状特征的分析和设计提供了一个通用且灵活的框架。为了捕获全局和局部几何图形,我们提出了基于三次样条小波生成内核的多分辨率形状签名。该签名提供了一流的形状检索性能。其次,我们研究了密集分布的低级形状描述符的码本的歧义建模。受空间提示改善形状区分的能力的启发,我们还建议采用Laplace-Beltrami算子的第二本征函数的等值线进行表面分割,这可以显着改善时间尺度局部描述符的检索性能。为了进一步提高形状检索的准确性,我们引入了一种固有的空间金字塔匹配方法。在两个3D形状基准上进行了广泛的实验,以与最新方法相比,评估所提出的光谱几何方法的性能。

著录项

  • 作者

    Li Chunyuan;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号