首页> 外文OA文献 >Combining remotely sensed optical and radar data in kNN-estimation of forest variables
【2h】

Combining remotely sensed optical and radar data in kNN-estimation of forest variables

机译:在森林变量的kNN估计中结合遥感光学和雷达数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of optical and radar data for estimation of forest variables has been investigated and evaluated by employing the k nearest neighbor (kNN) method. The investigation was performed at a test site located in the south of Sweden consisting mainly of Norway spruce and Scots pine forests with standwise stem volume in the range of 0–430 m3 ha–1. The kNN method imputes weighted reference plot variables to areas to be estimated (target areas), facilitating further use of data in forestry planning models. Remotely sensed multispectral optical data from the SPOT-4 XS satellite and radar data from the airborne CARABAS-II VHF SAR sensor were used, separately and combined, to define weights in the kNN algorithm. The weights were inversely proportional to the image feature distance between the reference plot and the target area. The distance metric was defined using regression models based on the image data sources. Positive impact on the accuracies of stem volume and age estimates was found by combining the two image data sources. Stem volume, at stand level, was estimated with a RMSE of 37 m3 ha–1 (22% of the true mean value) using the combination of optical and radar data, compared to 50 m3 ha–1 (30%) for the best single-sensor case in this study. In conclusion, the results indicate that the accuracy of forest variable estimations was substantially improved by using multisensor data.
机译:通过使用k最近邻(kNN)方法,研究和评估了使用光学和雷达数据估算森林变量。该调查是在瑞典南部的一个测试地点进行的,该测试地点主要由挪威云杉和苏格兰松林组成,其单茎的体积在0–430 m3 ha–1范围内。 kNN方法将加权参考地块变量推算到要估算的区域(目标区域),以利于在林业规划模型中进一步使用数据。分别和组合使用来自SPOT-4 XS卫星的遥感多光谱光学数据和来自机载CARABAS-II VHF SAR传感器的雷达数据来定义权重。权重与参考图和目标区域之间的图像特征距离成反比。使用基于图像数据源的回归模型定义距离度量。通过合并两个图像数据源,发现对茎体积和年龄估计的准确性有积极影响。结合光学和雷达数据,估计站立时的茎干体积的RMSE为37 m3 ha-1(真实平均值的22%),而最好的是50 m3 ha-1(30%)本研究中的单传感器案例。总之,结果表明,通过使用多传感器数据,森林变量估计的准确性大大提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号