首页> 外文OA文献 >A new approach to the classification of mammographic masses and normal breast tissue
【2h】

A new approach to the classification of mammographic masses and normal breast tissue

机译:乳腺X线摄影肿块和正常乳腺组织分类的新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new approach to mammographic mass detection is presented in this paper. Although different algorithms have been proposed for such a task, most of them are application dependent. In contrast, our approach makes use of a kindred topic in computer vision adapted to our particular problem. In this sense, we translate the eigenfaces approach for face detection/classification problems to a mass detection. Two different databases were used to show the robustness of the approach. The first one consisted on a set of 160 regions of interest (RoIs) extracted from the MIAS database, being 40 of them with confirmed masses and the rest normal tissue. The second set of RoIs was extracted from the DDSM database, and contained 196 RoIs containing masses and 392 with normal, but suspicious regions. Initial results demonstrate the feasibility of using such approach with performances comparable to other algorithms, with the advantage of being a more general, simple and cost-effective approach
机译:本文提出了一种新的乳腺X线摄影质量检测方法。尽管已针对此任务提出了不同的算法,但大多数算法都取决于应用程序。相反,我们的方法在计算机视觉中利用了一个适合我们特定问题的同类主题。从这个意义上讲,我们将针对人脸检测/分类问题的特征脸方法转换为大众检测。使用两个不同的数据库来显示该方法的鲁棒性。第一个是从MIAS数据库中提取的160个感兴趣区域(RoI)集合,其中40个具有确定的肿块,其余为正常组织。从DDSM数据库中提取了第二组RoI,其中包含196个RoI,其中包含质量,而392个RoI具有正常但可疑的区域。初步结果表明,使用这种方法的性能可与其他算法相媲美,其优点是它是一种更通用,更简单且更具成本效益的方法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号