首页> 外文OA文献 >Minimum profile Hellinger distance estimation for a semiparametric mixture model
【2h】

Minimum profile Hellinger distance estimation for a semiparametric mixture model

机译:半参数混合模型的最小轮廓Hellinger距离估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a new effective estimator for a class of semiparametric mixture models where one component has known distribution with possibly unknown parameters while the other component density and the mixing proportion are unknown. Such semiparametric mixture models have been often used in multiple hypothesis testing and the sequential clustering algorithm. The proposed estimator is based on the minimum profile Hellinger distance (MPHD), and its theoretical properties are investigated. In addition, we use simulation studies to illustrate the finite sample performance of the MPHD estimator and compare it with some other existing approaches. The empirical studies demonstrate that the new method outperforms existing estimators when data are generated under contamination and works comparably to existing estimators when data are not contaminated. Applications to two real data sets are also provided to illustrate the effectiveness of the new methodology.
机译:在本文中,我们为一类半参数混合模型提出了一种新的有效估计量,其中一个组分的分布已知,参数可能未知,而另一组分的密度和混合比例未知。这种半参数混合模型通常用于多重假设检验和顺序聚类算法中。所提出的估计器基于最小轮廓Hellinger距离(MPHD),并研究了其理论特性。此外,我们使用仿真研究来说明MPHD估算器的有限样本性能,并将其与其他一些现有方法进行比较。经验研究表明,当在污染下生成数据时,新方法的性能优于现有估计器;当数据未被污染时,新方法可与现有估计器相媲美。还提供了对两个真实数据集的应用,以说明新方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号