首页> 外文OA文献 >A robust reputation-based location-privacy recommender system using opportunistic networks
【2h】

A robust reputation-based location-privacy recommender system using opportunistic networks

机译:使用机会网络的强大的基于信誉的位置-隐私推荐系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Location-sharing services have grown in use commensurately with the increasing popularity of smart phones. As location data can be sensitive, it is important to preserve people’s privacy while using such services, and so location-privacy recommender systems have been proposed to help people configure their privacy settings.These recommenders collect and store people’s data in a centralised system, but these themselves can introduce new privacy threats and concerns.In this paper, we propose a decentralised location-privacy recommender system based on opportunistic networks. We evaluate our system using real-world location-privacy traces, and introduce a reputation scheme based on encounter frequencies to mitigate the potential effects of shilling attacks by malicious users. Experimental results show that, after receiving adequate data, our decentralised recommender system’s performance is close to the performance of traditional centralised recommender systems (3% difference in accuracy and 1% difference in leaks). Meanwhile, our reputation scheme significantly mitigates the effect of malicious users’input (from 55% to 8% success) and makes it increasingly expensive to conduct such attacks.
机译:随着智能手机的日益普及,位置共享服务的使用也相应增加。由于位置数据可能很敏感,因此在使用此类服务​​时保护人们的隐私很重要,因此提出了位置隐私推荐系统来帮助人们配置其隐私设置。这些推荐器将人们的数据收集并存储在集中式系统中,但是这些本身会带来新的隐私威胁和关注。本文提出了一种基于机会网络的分散式位置-隐私推荐系统。我们使用真实的位置-隐私跟踪评估我们的系统,并根据遇到的频率引入信誉计划,以减轻恶意用户进行先令攻击的潜在影响。实验结果表明,在获得足够的数据后,我们的分散式推荐系统的性能已接近传统的集中式推荐系统(准确度相差3%,泄漏相差1%)。同时,我们的信誉计划大大减轻了恶意用户输入的影响(成功率从55%降至8%),并且进行此类攻击的费用越来越高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号