首页> 外文OA文献 >Fast, uniform, and compact scalar multiplication for elliptic curves and genus 2 Jacobians with applications to signature schemes
【2h】

Fast, uniform, and compact scalar multiplication for elliptic curves and genus 2 Jacobians with applications to signature schemes

机译:椭圆曲线和2类Jacobian的快速,均匀和紧凑的标量乘法,并应用于签名方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We give a general framework for uniform, constant-time one-and two-dimensional scalar multiplication algorithms for elliptic curves and Jacobians of genus 2 curves that operate by projecting to the x-line or Kummer surface, where we can exploit faster and more uniform pseudomultiplication, before recovering the proper " signed " output back on the curve or Jacobian. This extends the work of López and Dahab, Okeya and Sakurai, and Brier and Joye to genus 2, and also to two-dimensional scalar multiplication. Our results show that many existing fast pseudomultiplication implementations (hitherto limited to applications in Diffie–Hellman key exchange) can be wrapped with simple and efficient pre-and post-computations to yield competitive full scalar multiplication algorithms, ready for use in more general discrete logarithm-based cryptosystems, including signature schemes. This is especially interesting for genus 2, where Kummer surfaces can outperform comparable elliptic curve systems. As an example, we construct an instance of the Schnorr signature scheme driven by Kummer surface arithmetic.
机译:我们提供了一个统一的,恒定时间的一维和二维标量乘法算法的通用框架,用于椭圆曲线和属2曲线的雅可比行列式,这些算法通过投影到x线或Kummer曲面进行操作,从而可以更快,更均匀地利用伪乘法,然后将适当的“有符号”输出恢复到曲线或雅可比行列。这将López和Dahab,Okeya和Sakurai以及Brier和Joye的工作扩展到第二类,并且扩展到二维标量乘法。我们的结果表明,许多现有的快速伪乘法实现(迄今仅限于Diffie-Hellman密钥交换中的应用)可以用简单而有效的预计算和后计算进行包装,以产生具有竞争力的全标量乘法算法,可以在更通用的对数中使用基于密码的系统,包括签名方案。这对于属2尤其有趣,其中Kummer曲面的性能可能优于可比较的椭圆曲线系统。例如,我们构造一个由Kummer曲面算法驱动的Schnorr签名方案的实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号