首页> 外文OA文献 >'Tartaglia, Zigzag Flips' : les particules denses à haut Reynolds
【2h】

'Tartaglia, Zigzag Flips' : les particules denses à haut Reynolds

机译:“塔塔利亚,曲折和翻转”:高雷诺数的致密颗粒

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This experimental work deals with sports balls trajectories. Those dense projectiles are laun- ched in air at several hundred kilometers per hour. In this situation, ball trajectories depend on the fluid flow around them which occurs at high Reynolds number (Re > 1000). The first effect we consider is the fluid drag. This friction reduces the range and gives rise to trajectories very different from parabola which are non symmetric toward the top. This kind of trajectories occurs in badminton for high clears. Nicollo Tartaglia was the first to draw those curves observing the trajectories of cannon balls. However, the air doesn’t only limit the forward motion. When balls spin, the Robin-Magnus effect produces a lateral force and curves the trajectory. This is studied in the case of clearances in soccer. Lateral aerodynamic forces also exist when the ball has no spin. The turbulent behavior of the flow around a spherical particle provides lateral forces with complex temporal dependency. This induces zigzag trajectories which are occasionally observed in volley, soccer and baseball. We inspect the condition of occurrence of this phenomenon. Then, the case of non spherical balls are considered. Such balls are used in rugby, football and badminton. Shuttlecocks have the propriety to fly the nose ahead which oblige them to flip after each racket impact. Finally, we study the motion of a fluid particle with the particular case of a Leidenfrost liquid ring. A such object is created by approaching an annular magnet from a paramagnetic liquid oxygen drop. The closing dynamics of this non wetting ring is described with by the way of a potential flow approach.
机译:这项实验性工作涉及运动球的轨迹。那些密集的弹丸以每小时几百公里的速度在空中发射。在这种情况下,球的轨迹取决于在高雷诺数(Re> 1000)时出现的流体流动。我们考虑的第一个效果是流体阻力。这种摩擦减小了射程,并产生了与抛物线非常不同的抛物线,抛物线的顶部不对称。这种轨迹发生在羽毛球中以获得高净度。 Nicollo Tartaglia是第一个绘制这些曲线以观察炮弹轨迹的人。但是,空气不仅会限制前进。当球旋转时,Robin-Magnus效应会产生横向力并弯曲轨迹。这是在足球比赛中进行的。当球不旋转时,也存在横向空气动力。绕球形粒子流动的湍流行为提供了具有复杂的时间依赖性的横向力。这会产生曲折的轨迹,在排球,足球和棒球中偶尔会观察到。我们检查这种现象的发生情况。然后,考虑非球形球的情况。这种球用于橄榄球,足球和羽毛球。 ttle球有把鼻子向前飞的能力,这迫使它们在每次球拍撞击后翻转。最后,我们研究了带有Leidenfrost液环的特殊情况下流体粒子的运动。通过从顺磁性液态氧滴接近环形磁体来产生这样的目的。该非润湿环的闭合动力学通过势流方法来描述。

著录项

  • 作者

    Texier Baptiste Darbois;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号