首页> 外文OA文献 >Compréhension des mécanismes régissant le fonctionnement d'un tube hyperfréquence de type MILO (Magnetically Insulated Line Oscillator).
【2h】

Compréhension des mécanismes régissant le fonctionnement d'un tube hyperfréquence de type MILO (Magnetically Insulated Line Oscillator).

机译:了解控制MILO(磁绝缘线振荡器)类型的微波管工作的机制。

摘要

The MILO (Magnetically Insulated Line Oscillator) is a high power microwave source capable of delivering some output powers greater than 1 GW at a frequency of several gigahertz. The device is a crossed electric and magnetic field oscillator without any external structure to establish the static magnetic field required to guide the electron beam. The electrons are emitted by explosive emission from a velvet cathode and accelerated by the electric field in the A–K gap. The anode structure is an electromagnetic cavity which stores some energy, transferred from the electron beam. Thus, the geometry allows the beam to propagate in a magnetic insulation conditi! on and in synchronism between the phase velocity of the electromagnetic slow waves and the drift velocity of the electrons. The aim of this PhD thesis is to review and to study the main characteristics of a compact MILO, when all dimensions are reduced by a factor of 2, in comparison with those in literature, to develop a prototype. All geometrical parameters were included and calculated using the 2D and 3D MAGIC electromagnetic–PIC code. First, we have analysed the cavity–output waveguide coupling and, second the physical factors which reduce the output power. Finally, an optimized modelled tube has led to the construction of an experimental pulsed device in which the preliminary cold tests (without electron beam) have shown a good correlation with the theoretical analysis. This work will be followed by an experimental phase which should demonstrate the merits of our challenge in building a compact MILO source.
机译:MILO(电磁绝缘线振荡器)是一种高功率微波源,能够以几GHz的频率提供一些大于1 GW的输出功率。该设备是一个交叉的电场和磁场振荡器,无需任何外部结构即可建立引导电子束所需的静磁场。电子通过天鹅绒阴极的爆炸性发射而发射,并通过A–K间隙中的电场加速。阳极结构是一个电磁腔,它存储从电子束传递来的一些能量。因此,几何形状允许束在磁绝缘条件下传播。并在电磁慢波的相速度和电子的漂移速度之间同步进行。本博士学位论文的目的是审查和研究紧凑型MILO的主要特征,与文献中的尺寸相比,将所有尺寸减小2倍,以开发原型。包括所有几何参数,并使用2D和3D MAGIC电磁–PIC代码进行计算。首先,我们分析了腔-输出波导耦合,其次分析了降低输出功率的物理因素。最后,经过优化的模型管导致了实验性脉冲设备的构建,其中初步的冷测试(无电子束)已显示出与理论分析的良好相关性。在这项工作之后,将进行一个实验阶段,该阶段应证明我们在构建紧凑的MILO源方面所面临挑战的优点。

著录项

  • 作者

    Cousin Richard;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号