首页> 外文OA文献 >Design-based approach to k-nearest neighbours technique for coupling field and remotely sensed data in forest surveys
【2h】

Design-based approach to k-nearest neighbours technique for coupling field and remotely sensed data in forest surveys

机译:基于设计的k近邻算法在森林调查中耦合野外数据和遥感数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The statistical properties of the k-NN estimators are investigated in a design-based framework, avoiding any assumption about the population under study. The issue of coupling remotely sensed digital imagery with data arising from forest inventories conducted using probabilistic sampling schemes is considered. General results are obtained for the k-NN estimator at the pixel level. When averages (or totals) of forest attributes for the whole study area or sub-areas are of interest, the use of the empirical difference estimator is proposed. The estimator is shown to be approximately unbiased with a variance admitting unbiased or conservative estimators. The performance of the empirical difference estimator is evaluated by an extensive simulation study performed on several populations whose dimensions and covariate values are taken from a real case study. Samples are selected from the populations by means of simple random sampling without replacement. Comparisons with the generalized regression estimator and Horvitz–Thompson estimators are also performed. An application to a local forest inventory on a test area of central Italy is considered.
机译:在基于设计的框架中研究了k-NN估计量的统计特性,避免了对研究人群的任何假设。考虑了将遥感数字图像与使用概率抽样方案进行的森林调查所产生的数据耦合的问题。对于k-NN估计器,可以在像素级别获得一般结果。当关注整个研究区域或子区域的森林属性的平均值(或总数)时,建议使用经验差异估计量。估计量显示为近似无偏,方差允许无偏或保守估计。经验差异估计量的性能是通过对多个种群的广泛模拟研究进行评估的,这些种群的维度和协变量值均来自真实案例研究。样本是通过简单的随机抽样而不替换的方式从总体中选择的。还与广义回归估计量和Horvitz-Thompson估计量进行了比较。考虑将其应用于意大利中部测试区的当地森林资源清查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号