首页> 外文OA文献 >Naive Bayes Classification of Public Health Data with Greedy Feature Selection
【2h】

Naive Bayes Classification of Public Health Data with Greedy Feature Selection

机译:朴素贝叶斯分类与贪婪特征选择的公共卫生数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Public health issues feature prominently in popular awareness, political debate, and in data mining literature. Data mining has the potential to influence public health in a myriad of ways, from personalized, genetic medicine to studies of environmental health and epidemiology, and many applications in between. Authors have asserted the importance of medical data as the basis for any conclusions applied to the public health domain, the promise of naive Bayes classification for prediction in the public health domain, and the impact of feature selection on classification accuracy. In keeping with this perspective, this study explored the combination of a naive Bayes classifier with greedy feature selection, applied to a robust public health dataset, with the goal of efficiently identifying the one or several attributes, which best predict a selected target attribute. This approach did consistently identify the most-predictive attributes for a given target attribute and produced modest increases in classification accuracy. For each choice of target attribute, the most predictive attributes were those relating to diagnosis or procedure codes, a result, which points to several opportunities for future work.
机译:在公众意识,政治辩论和数据挖掘文献中,公共卫生问题尤为突出。数据挖掘具有以多种方式影响公共卫生的潜力,从个性化的遗传医学到环境卫生和流行病学的研究,以及介于两者之间的许多应用。作者断言,医学数据作为应用于公共卫生领域的任何结论的基础,对朴素贝叶斯分类进行公共卫生领域预测的希望以及特征选择对分类准确性的影响,都至关重要。为了与这种观点保持一致,本研究探索了将朴素的贝叶斯分类器与贪婪特征选择相结合的方法,将其应用于稳健的公共卫生数据集,目的是有效地识别一个或多个属性,从而最好地预测选定的目标属性。这种方法确实能够始终如一地为给定的目标属性识别出最可预测的属性,并且在分类准确性上产生了适度的增长。对于目标属性的每种选择,最可预测的属性是与诊断或过程代码相关的属性,结果表明这为将来的工作提供了许多机会。

著录项

  • 作者

    Hickey Stephanie J.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号