首页> 外文OA文献 >MLP neural network based gas classification system on Zynq SoC
【2h】

MLP neural network based gas classification system on Zynq SoC

机译:Zynq SoC上基于MLP神经网络的气体分类系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Systems based on Wireless Gas Sensor Networks (WGSN) offer a powerful tool to observe and analyse data in complex environments over long monitoring periods. Since the reliability of sensors is very important in those systems, gas classification is a critical process within the gas safety precautions. A gas classification system has to react fast in order to take essential actions in case of fault detection. This paper proposes a low latency real-time gas classification service system, which uses a Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN) to detect and classify the gas sensor data. An accurate MLP is developed to work with the data set obtained from an array of tin oxide (SnO2) gas sensor, based on convex Micro hotplates (MHP). The overall system acquires the gas sensor data through RFID, and processes the sensor data with the proposed MLP classifier implemented on a System on Chip (SoC) platform from Xilinx. Hardware implementation of the classifier is optimized to achieve very low latency for real-time application. The proposed architecture has been implemented on a ZYNQ SoC using fixed-point format and achieved results have shown that an accuracy of 97.4% has been obtained.
机译:基于无线气体传感器网络(WGSN)的系统提供了强大的工具,可以在较长的监视期内观察和分析复杂环境中的数据。由于传感器的可靠性在这些系统中非常重要,因此气体分类是气体安全预防措施中的关键过程。气体分类系统必须快速反应,以便在检测到故障时采取必要的措施。本文提出了一种低延迟的实时气体分类服务系统,该系统使用多层感知器(MLP)人工神经网络(ANN)对气体传感器数据进行检测和分类。基于凸型微型热板(MHP),开发了一种精确的MLP以处理从氧化锡(SnO2)气体传感器阵列获得的数据集。整个系统通过RFID获取气体传感器数据,并使用在Xilinx的片上系统(SoC)平台上实现的拟议MLP分类器处理传感器数据。分类器的硬件实现经过优化,以实现实时应用程序极低的延迟。所提出的体系结构已在ZYNQ SoC上使用定点格式实现,并且获得的结果表明已获得97.4%的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号