首页> 外文OA文献 >Technical note: Intercomparison of three AATSR Level 2 (L2) AOD products over China
【2h】

Technical note: Intercomparison of three AATSR Level 2 (L2) AOD products over China

机译:技术说明:在中国比较三种AATSR 2级(L2)AOD产品的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of four main focus areas of the PEEX initiative is to establish and sustain long-term, continuous, and comprehensive ground-based, airborne, and seaborne observation infrastructure together with satellite data. The Advanced Along-Track Scanning Radiometer (AATSR) aboard ENVISAT is used to observe the Earth in dual view. The AATSR data can be used to retrieve aerosol optical depth (AOD) over both land and ocean, which is an important parameter in the characterization of aerosol properties. In recent years, aerosol retrieval algorithms have been developed both over land and ocean, taking advantage of the features of dual view, which can help eliminate the contribution of Earth's surface to top-of-atmosphere (TOA) reflectance. The Aerosol_cci project, as a part of the Climate Change Initiative (CCI), provides users with three AOD retrieval algorithms for AATSR data, including the Swansea algorithm (SU), the ATSR-2ATSR dual-view aerosol retrieval algorithm (ADV), and the Oxford-RAL Retrieval of Aerosol and Cloud algorithm (ORAC). The validation team of the Aerosol-CCI project has validated AOD (both Level 2 and Level 3 products) and AE (Ångström Exponent) (Level 2 product only) against the AERONET data in a round-robin evaluation using the validation tool of the AeroCOM (Aerosol Comparison between Observations and Models) project. For the purpose of evaluating different performances of these three algorithms in calculating AODs over mainland China, we introduce ground-based data from CARSNET (China Aerosol Remote Sensing Network), which was designed for aerosol observations in China. Because China is vast in territory and has great differences in terms of land surfaces, the combination of the AERONET and CARSNET data can validate the L2 AOD products more comprehensively. The validation results show different performances of these products in 2007, 2008, and 2010. The SU algorithm performs very well over sites with different surface conditions in mainland China from March to October, but it slightly underestimates AOD over barren or sparsely vegetated surfaces in western China, with mean bias error (MBE) ranging from 0.05 to 0.10. The ADV product has the same precision with a low root mean square error (RMSE) smaller than 0.2 over most sites and the same error distribution as the SU product. The main limits of the ADV algorithm are underestimation and applicability; underestimation is particularly obvious over the sites of Datong, Lanzhou, and Urumchi, where the dominant land cover is grassland, with an MBE larger than 0.2, and the main aerosol sources are coal combustion and dust. The ORAC algorithm has the ability to retrieve AOD at different ranges, including high AOD (larger than 1.0); however, the stability deceases significantly with increasing AOD, especially when AOD > 1.0. In addition, the ORAC product is consistent with the CARSNET product in winter (December, January, and February), whereas other validation results lack matches during winter.
机译:PEEX计划的四个主要重点领域之一是建立和维持长期,连续和全面的地面,空中和海上观测基础设施以及卫星数据。 ENVISAT上的高级沿轨扫描辐射计(AATSR)用于以双视图观察地球。 AATSR数据可用于检索陆地和海洋上的气溶胶光学深度(AOD),这是表征气溶胶特性的重要参数。近年来,利用双重视图的功能,已经在陆地和海洋上开发了气溶胶检索算法,这可以帮助消除地球表面对大气层(TOA)反射率的影响。作为气候变化倡议(CCI)的一部分的Aerosol_cci项目为用户提供了三种针对AATSR数据的AOD检索算法,包括斯旺西算法(SU),ATSR-2ATSR双视图气溶胶检索算法(ADV)和牛津-RAL气溶胶和云算法检索(ORAC)。 Aerosol-CCI项目的验证团队已使用AeroCOM的验证工具在ARONET数据的循环评估中验证了AOD(2级和3级产品)和AE(Ångström指数)(仅2级产品) (观测值与模型之间的气溶胶比较)项目。为了评估这三种算法在计算中国大陆地区AOD时的不同性能,我们引入了CARSNET(中国气溶胶遥感网络)的地面数据,该数据是为在中国进行气溶胶观测而设计的。由于中国地域辽阔,地表差异很大,因此AERONET和CARSNET数据的结合可以更全面地验证L2 AOD产品。验证结果表明,这些产品在2007年,2008年和2010年的性能各不相同。SU算法在3月至10月中国大陆表面条件不同的站点上表现良好,但略微低估了西部贫瘠或稀疏植被表面的AOD中国,平均偏差误差(MBE)在0.05到0.10之间。 ADV产品具有相同的精度,在大多数站点上均具有小于0.2的低均方根误差(RMSE),并且与SU产品具有相同的误差分布。 ADV算法的主要局限性是低估和适用性。在大同,兰州和乌鲁木齐地区,低估特别明显,那里的主要土地覆盖是草地,MBE大于0.2,主要的气溶胶来源是煤炭燃烧和粉尘。 ORAC算法具有在不同范围内检索AOD的能力,包括高AOD(大于1.0);但是,随着AOD的增加,稳定性会大大降低,尤其是当AOD≥1.0时。此外,ORAC产品在冬季(12月,1月和2月)与CARSNET产品保持一致,而其他验证结果在冬季缺乏匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号