首页> 外文OA文献 >Multiple composite kernel learning for hyperspectral image classification
【2h】

Multiple composite kernel learning for hyperspectral image classification

机译:多重复合核学习用于高光谱图像分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, we develop a new framework to combine ensemble learning and composite kernel learning for hyperspectral image classification. We refer it as the multiple composite kernel learning, which is based on an iterative architecture. More specifically, in each iteration, we use the rotation-based ensemble to create rotation matrix, which is used to generate rotated features for both spectral and spatial information (e.g., extinction profiles). Then, the new spectral and spatial features are integrated into the composite kernels based on support vector machines classifier. Different rotation matrices will lead to obtaining various newly spectral and spatial characteristics, thereby they further increase the diversity and the classification performance. Experimental results on Indian Pines benchmark hyperspectral dataset demonstrate the excellent performance of the proposed method.
机译:在这项工作中,我们开发了一个新的框架,可以将集成学习和复合核学习相结合进行高光谱图像分类。我们将其称为基于迭代体系结构的多重复合内核学习。更具体地说,在每次迭代中,我们使用基于旋转的集合创建旋转矩阵,该矩阵用于为光谱和空间信息(例如消光剖面)生成旋转特征。然后,基于支持向量机分类器,将新的光谱和空间特征集成到复合核中。不同的旋转矩阵将导致获得各种新的光谱和空间特征,从而进一步增加了多样性和分类性能。在印度松树基准高光谱数据集上的实验结果证明了该方法的出色性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号