首页> 外文OA文献 >Automatic View Selection Using Viewpoint Entropy and its Application to Image-Based Modelling
【2h】

Automatic View Selection Using Viewpoint Entropy and its Application to Image-Based Modelling

机译:基于视点熵的自动视图选择及其在基于图像的建模中的应用

摘要

In the last decade a new family of methods, namely Image-Based Rendering, has appeared. These techniques rely on the use of precomputed images to totally or partially substitute the geometric representation of the scene. This allows to obtain realistic renderings even with modest resources. The main problem is the amount of data needed, mainly due to the high redundancy and the high computational cost of capture. In this paper we present a new method to automatically determine the correct camera placement positions in order to obtain a minimal set of views for Image-Based Rendering. The input is a 3D polyhedral model including textures and the output is a set of views that sample all visible polygons at an appropriate rate. The viewpoints should cover all visible polygons with an adequate quality, so that we sample the polygons at sufficient rate. This permits to avoid the excessive redundancy of the data existing in several other approaches. We also reduce the cost of the capturing process, as the number of actually computed reference views decreases. The localization of interesting viewpoints is performed with the aid of an information theory-based measure, dubbed viewpoint entropy. This measure is used to determine the amount of information seen from a viewpoint. Next we develop a greedy algorithm to minimize the number of images needed to represent a scene. In contrast to other approaches, our system uses a special preprocess for textures to avoid artifacts appearing in partially occluded textured polygons. Therefore no visible detail of these images is lost.
机译:在过去的十年中,出现了一系列新的方法,即基于图像的渲染。这些技术依靠使用预先计算的图像来完全或部分替代场景的几何表示。即使资源有限,这也可以获取逼真的渲染。主要问题是所需的数据量,这主要是由于高冗余性和捕获的高计算成本所致。在本文中,我们提出了一种自动确定正确的相机放置位置的新方法,以便为基于图像的渲染获得最少的视图集。输入是包含纹理的3D多面体模型,输出是一组视图,以适当的速率对所有可见多边形进行采样。视点应以足够的质量覆盖所有可见的多边形,以便我们以足够的速率对多边形进行采样。这样可以避免其他几种方法中存在的数据的过度冗余。随着实际计算的参考视图数量的减少,我们还降低了捕获过程的成本。借助基于信息论的度量(称为视点熵)对有趣的视点进行定位。此度量用于确定从视点看到的信息量。接下来,我们开发一种贪婪算法以最小化表示一个场景所需的图像数量。与其他方法相比,我们的系统对纹理使用特殊的预处理,以避免在部分遮挡的纹理多边形中出现伪像。因此,这些图像的可见细节不会丢失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号