首页> 外文OA文献 >A method for incorporating equilibrium chemical reactions into multiphase flow models for CO2 storage
【2h】

A method for incorporating equilibrium chemical reactions into multiphase flow models for CO2 storage

机译:一种将平衡化学反应纳入多相流模型以存储二氧化碳的方法

摘要

CO2 injection and storage in deep saline aquifers involves many coupled processes, including multiphase flow, heat and mass transport, rock deformation and mineral precipitation and dissolution. Coupling is especially critical in carbonate aquifers, where minerals will tend to dissolve in response to the dissolution of CO2 into the brine. The resulting neutralization will drive further dissolution of both CO2 and calcite. This suggests that large cavities may be formed and that proper simulation may require full coupling of reactive transport and multiphase flow. We show that solving the latter may suffice whenever two requirements are met: (1) all reactions can be assumed to occur in equilibrium and (2) the chemical system can be calculated as a function of the state variables of the multiphase flow model (i.e., liquid and gas pressure, and temperature). We redefine the components of multiphase flow codes (traditionally, water and CO2), so that they are conservative for all reactions of the chemical system. This requires modifying the traditional constitutive relationships of the multiphase flow codes, but yields the concentrations of all species and all reaction rates by simply performing speciation and mass balance calculations at the end of each time step. We applied this method to the H2O-CO2-Na-Cl-CaCO3 system, so as to model CO2 injection into a carbonate aquifer containing brine. Results were very similar to those obtained with traditional formulations, which implies that full coupling of reactive transport and multi-phase flow is not really needed for this kind of systems, but the resulting simplifications may make it advisable even for cases where the above requirements are not met. Regarding the behavior of carbonate rocks, we find that porosity development near the injection well is small because of the low solubility of calcite. Moreover, dissolution concentrates at the front of the advancing CO2 plume because the brine below the plume tends to reach high CO2 concentrations quite rapidly. We conclude that carbonate dissolution needs not to be feared. © 2013 Elsevier Ltd.
机译:在深层盐水中注入和储存CO2涉及许多耦合过程,包括多相流,传热和传质,岩石变形以及矿物沉淀和溶解。在碳酸盐含水层中,耦合尤为重要,在这种情况下,矿物质会因二氧化碳向盐水中的溶解而趋于溶解。产生的中和作用将驱使CO2和方解石进一步溶解。这表明可能会形成大空腔,并且正确的模拟可能需要反应性输运和多相流的完全耦合。我们证明,只要满足两个条件,解决后者就足够了:(1)可以假定所有反应均处于平衡状态;(2)可以根据多相流模型的状态变量来计算化学系统(即,液体和气体的压力以及温度)。我们重新定义了多相流代码的组成部分(传统上是水和CO2),因此它们对于化学系统的所有反应都是保守的。这需要修改多相流代码的传统本构关系,但是只需在每个时间步结束时执行物种形成和质量平衡计算,即可得出所有物质的浓度和所有反应速率。我们将此方法应用于H2O-CO2-Na-Cl-CaCO3系统,以模拟将CO2注入含盐水的碳酸盐含水层中的过程。结果与使用传统配方获得的结果非常相似,这意味着此类系统实际上并不需要完全耦合反应性输运和多相流,但即使在上述要求得到满足的情况下,简化后的结果仍可取。没见过。关于碳酸盐岩的行为,我们发现由于方解石溶解度低,在注入井附近的孔隙度发展很小。此外,溶解物集中在前进的CO2羽流的前端,因为羽流下方的盐水往往会很快迅速达到高CO2浓度。我们得出的结论是,不必担心碳酸盐的溶解。 ©2013爱思唯尔有限公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号