首页> 外文OA文献 >A comparison of active set method and genetic algorithm approaches for learning weighting vectors in some aggregation operators
【2h】

A comparison of active set method and genetic algorithm approaches for learning weighting vectors in some aggregation operators

机译:主动集合法与遗传算法在一些聚合算子中学习加权向量的比较

摘要

In this article we compare two contrasting methods, active set method (ASM) and genetic algorithms, for learning the weights in aggregation operators, such as weighted mean (WM), ordered weighted average (OWA), and weighted ordered weighted average (WOWA). We give the formal definitions for each of the aggregation operators, explain the two learning methods, give results of processing for each of the methods and operators with simple test datasets, and contrast the approaches and results.
机译:在本文中,我们比较了两种相反的方法,即主动集方法(ASM)和遗传算法,用于学习聚合算子中的权重,例如加权平均值(WM),有序加权平均值(OWA)和加权有序加权平均值(WOWA) 。我们给出了每个聚合运算符的正式定义,解释了两种学习方法,给出了使用简单测试数据集对每种方法和运算符进行处理的结果,并对方法和结果进行了对比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号