首页> 外文OA文献 >Fully stable numerical calculations for finite onedimensional structures: mapping the Transfer Matrix method
【2h】

Fully stable numerical calculations for finite onedimensional structures: mapping the Transfer Matrix method

机译:有限一维结构的完全稳定数值计算:映射传递矩阵方法

摘要

We design a fully stable numerical solution of the Maxwell´s equations with the Transfer Matrix Methodud(TMM) to understand the interaction between an electromagnetic field and a finite, one-dimensional, nonperiodicudstructure. Such an exact solution can be tailored from a conventional solution by choosing anudadequate transformation between its reference systems, which induces a mapping between its associatedudTMMs. The paper demonstrates theoretically the numerical stability of the TMM for the exact solutionudwithin the framework of Maxwell´s equations, but the same formalism can efficiently be applied toudresolve other classical or quantum linear wave-propagation interaction in one, two, and three dimensions.udThis is because the formalism is exclusively built up for an in depth analysis of the TMM´s symmetries
机译:我们使用传递矩阵方法 ud(TMM)设计麦克斯韦方程组的完全稳定的数值解,以了解电磁场与有限的一维非周期性 ud结构之间的相互作用。通过在参考系统之间选择一个足够的变换,可以从常规解决方案中裁剪出这样一个精确的解决方案,从而在其关联的udTMM之间进行映射。本文从理论上证明了Maxm方程框架内TMM的精确解的数值稳定性,但相同的形式主义可以有效地应用于解决一,二和三中其他经典或量子线性波传播相互作用。 ud这是三个维度。 ud这是因为形式主义是专门为深入分析TMM的对称性而建立的

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号