首页> 外文OA文献 >A model of daily mean canopy conductance for calculating transpiration of olive canopies
【2h】

A model of daily mean canopy conductance for calculating transpiration of olive canopies

机译:日均冠层电导模型,用于计算橄榄冠层的蒸腾作用

摘要

We tested the hypothesis that the transpiration (λEp) of high-coupled canopies, such as olive groves, may be calculated on a daily basis with sufficient precision by the Penman–Monteith ‘big leaf’ equation, by a model of bulk daily canopy conductance (gc) capable of scaling for canopy dimension. Given the limited data required, such a model could replace the standard approach (ET0 × Kc) for calculating olive water requirements, enhancing the precision of estimates. We developed a specific model of daily gc for unstressed olive canopies that was calibrated by transpiration measurements obtained by water balance from a 2-year experiment in a mature orchard with λEp ranging from 0.6 (February 1993) to 11.5 (July 1994) MJ m–2 day–1 and where leaf area index (L) changed from 1.25 to 2.5. The model uses the intercepted fraction of daily PAR and a linear function of average daytime temperature. The model was validated with λEp data collected by eddy covariance in a 3-year experiment conducted in a growing orchard that differed in L and cultivar from the one used in the calibration. The gc model, when used in the Penman–Monteith equation, gave very good daily λEp predictions for all seasons during 3 years, ranging from 0.5 (November 1998) to 5.5 (June 2000) MJ m–2 day–1, indicating that the goals of dealing with the dependence of olive gc on L and of simulating the seasonal variations in gc were achieved. A comparison with the Jarvis gc model, calibrated with 2 months of measured gc hourly data, showed that the gc model developed here performed better than the Jarvis model for the 3-year dataset. The exception to this was the period in which the Jarvis model was calibrated. This indicates that (1) the Jarvis model did not account for the seasonal variations in gc of the olive trees; and (2) the spatial and temporal scale assumptions required in the calibration of gc generate seasonal errors in the simulated bulk daily λEp for this crop. The applicability of this bulk gc model is restricted to well watered olive canopies and to the one-layer approach of calculating λEp but it could be adapted to rain-fed canopies in the future.
机译:我们测试了这样的假设:高耦合的树冠(例如橄榄树)的蒸腾量(λEp)可以通过Penman-Monteith的“大叶”方程,通过每日大量树冠电导模型,以足够的精度每天计算(gc)能够缩放树冠尺寸。鉴于所需数据有限,这种模型可以代替用于计算橄榄水需求量的标准方法(ET0×Kc),从而提高估算的准确性。我们开发了一个特定的无压力橄榄冠层每日gc模型,该模型通过蒸腾测量进行校准,该测量是通过成熟果园的2年实验中水平衡获得的,λEp在0.6(1993年2月)至11.5(1994年7月)之间MJ m– 2天1天,且叶子面积指数(L)从1.25变为2.5。该模型使用每日PAR的截获分数和平均白天温度的线性函数。在一个为期三年的实验中,通过涡度协方差收集的λEp数据对模型进行了验证,该实验在一个生长的果园中进行,该果园的L和品种不同于标定中使用的品种。当在Penman–Monteith方程中使用gc模型时,在3年的所有季节中,从0.5(1998年11月)到5.5(2000年6月)MJ m-2 day-1,给出了非常好的每日λEp预测,表明实现了处理橄榄gc对L的依赖性以及模拟gc的季节性变化的目标。与Jarvis gc模型进行比较,并用2个月测得的gc每小时数据进行校准,结果表明,此处开发的gc模型在三年数据集中的表现优于Jarvis模型。例外的是Jarvis模型被校准的时期。这表明(1)Jarvis模型没有考虑橄榄树gc的季节性变化; (2)gc校准所需的空间和时间尺度假设会在该作物的模拟每日散装λEp中产生季节性误差。该批量gc模型的适用性仅限于浇水充足的橄榄冠层和计算λEp的单层方法,但将来可能会应用于雨养冠层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号