首页> 外文OA文献 >Nanomechanical characterization of alumina coatings grown on FeCrAl alloy by thermal oxidation
【2h】

Nanomechanical characterization of alumina coatings grown on FeCrAl alloy by thermal oxidation

机译:FeCrAl合金上热氧化生长氧化铝涂层的纳米力学表征

摘要

This work studies the feasibility of using repetitive-nano-impact tests with a cube-corner tip and low loads for obtaining quantitative fracture toughness values in thin and brittle coatings. For this purpose, it will be assumed that the impacts are able to produce a cracking, similar to the pattern developed for the classical fracture toughness tests in bulk materials, and therefore, from the crack developed in the repetitive impacts it will be possible to evaluate the suitability of the classical indentation models (Anstins and Laugier) for measuring fracture toughness. However, the length of this crack has to be lower than 10% of the total coating thickness to avoid substrate contributions. For this reason, and in order to ensure a small plastic region localized at the origin of the crack tip, low load values (or small distance between the indenter tip and the surface) have to be used. In order to demonstrate the validity of this technique, repetitive-nano-impact will be done in a fine and dense oxide layer (α-AlO), which has been developed on the top of oxide dispersion strengthened (ODS) FeCrAl alloys (PM 2000) by thermal oxidation at elevated temperatures. Moreover, it will be shown how it is possible to know with each new impact the crack geometry evolution from Palmqvist crack to half-penny crack, being able to study the proper evolution of the different values of fracture toughness in terms of both indentation models and as a function of the strain rate, ε, decreasing. Thereby, fracture toughness values for α-AlO layer decrease from ~4.40 √m , for high ε value (10 s), to ~3.21MPam, for quasi-static ε value (10 s). On the other hand, ε a new process to obtain fracture toughness values will be analysed, when the classical indentation models are not met. These values are typically found in the literature for bulk α-AlO, demonstrating the use of repetitive-nano-impact tests which not only provide qualitative information about fracture resistance of the materials but it also can be used to obtain quantitative information as fracture toughness values in the case of brittle materials.
机译:这项工作研究了使用具有立方角尖端和低载荷的重复性纳米冲击试验在薄而脆的涂层中获得定量断裂韧性值的可行性。为此,将假定冲击能够产生裂纹,类似于在散装材料中为经典断裂韧性测试开发的模式,因此,从重复冲击中产生的裂纹中,有可能进行评估经典压痕模型(Anstins和Laugier)对测量断裂韧性的适用性。但是,该裂纹的长度必须小于总涂层厚度的10%,以避免基材的影响。为此,并且为了确保在裂纹尖端的起点处定位一个小的塑性区域,必须使用低载荷值(或压头尖端与表面之间的距离很小)。为了证明该技术的有效性,将在细密致密的氧化物层(α-AlO)中进行重复纳米撞击,该层已在氧化物弥散强化(ODS)FeCrAl合金的顶部开发(PM 2000 )在高温下进行热氧化。此外,还将展示如何通过每一次新的冲击来知道从Palmqvist裂纹到半便士裂纹的裂纹几何演化,并能够根据压痕模型和压痕模型研究不同断裂韧性值的正确演变。应变率ε的函数减小。因此,α-AlO层的断裂韧性值从高ε值(10 s)的约4.40√m降低到半静态ε值(10 s)的〜3.21MPam。另一方面,当不满足经典压痕模型时,将分析获得断裂韧性值的新方法。这些值通常可在文献中找到,用于散装α-AlO,这表明使用了重复性纳米冲击试验,该试验不仅可提供有关材料抗断裂性的定性信息,而且还可用于获得定量信息(作为断裂韧性值)对于脆性材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号