首页> 外文OA文献 >System-Aware Smart Network Management for Nano-Enriched Water Quality Monitoring
【2h】

System-Aware Smart Network Management for Nano-Enriched Water Quality Monitoring

机译:系统感知的智能网络管理,用于纳米级水质监测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a comprehensive water quality monitoring system that employs a smart network management, nano-enriched sensing framework, and intelligent and efficient data analysis and forwarding protocols for smart and system-aware decision making. The presented system comprises two main subsystems, a data sensing and forwarding subsystem (DSFS), and Operation Management Subsystem (OMS). The OMS operates based on real-time learned patterns and rules of system operations projected from the DSFS to manage the entire network of sensors. The main tasks of OMS are to enable real-time data visualization, managed system control, and secure system operation. The DSFS employs a Hybrid Intelligence (HI) scheme which is proposed through integrating an association rule learning algorithm with fuzzy logic and weighted decision trees. The DSFS operation is based on profiling and registering raw data readings, generated from a set of optical nanosensors, as profiles of attribute-value pairs. As a case study, we evaluate our implemented test bed via simulation scenarios in a water quality monitoring framework. The monitoring processes are simulated based on measuring the percentage of dissolved oxygen and potential hydrogen (PH) in fresh water. Simulation results show the efficiency of the proposed HI-based methodology at learning different water quality classes.
机译:本文提出了一个综合的水质监测系统,该系统采用了智能网络管理,纳米级丰富的传感框架以及智能,高效的数据分析和转发协议,以进行智能和系统感知的决策。提出的系统包括两个主要子系统,一个数据传感和转发子系统(DSFS),以及操作管理子系统(OMS)。 OMS根据DSFS计划的实时学习模式和系统操作规则进行操作,以管理整个传感器网络。 OMS的主要任务是实现实时数据可视化,托管系统控制和安全的系统操作。 DSFS采用了一种混合智能(HI)方案,该方案是通过将关联规则学习算法与模糊逻辑和加权决策树相集成而提出的。 DSFS操作基于对一组光学纳米传感器生成的原始数据读数进行配置和注册,作为属性值对的配置文件。作为案例研究,我们在水质监测框架中通过模拟方案评估了已实施的测试床。基于测量淡水中溶解氧和潜在氢(PH)的百分比来模拟监视过程。仿真结果表明,所提出的基于HI的方法在学习不同水质等级时的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号