首页> 外文OA文献 >Development of Neural Network Techniques for Finger-Vein Pattern Classification
【2h】

Development of Neural Network Techniques for Finger-Vein Pattern Classification

机译:神经网络技术在指静脉模式分类中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

[[abstract]]A personal identification system using finger-vein patterns and neural network techniques is proposed in the presentstudy. In the proposed system, the finger-vein patterns are captured by a device that can transmit near infraredthrough the finger and record the patterns for signal analysis and classification. The biometric system for verificationconsists of a combination of feature extraction using principal component analysis and pattern classification usingboth back-propagation network and adaptive neuro-fuzzy inference systems. Finger-vein features are first extractedby principal component analysis method to reduce the computational burden and removes noise residing in thediscarded dimensions. The features are then used in pattern classification and identification. To verify the effect ofthe proposed adaptive neuro-fuzzy inference system in the pattern classification, the back-propagation network iscompared with the proposed system. The experimental results indicated the proposed system using adaptiveneuro-fuzzy inference system demonstrated a better performance than the back-propagation network for personalidentification using the finger-vein patterns.
机译:[[摘要]]本文提出了一种使用手指静脉模式和神经网络技术的个人识别系统。在所提出的系统中,指静脉图案由可以通过手指透射近红外并记录该图案以进行信号分析和分类的设备捕获。用于验证的生物特征识别系统包括使用主成分分析的特征提取和使用反向传播网络和自适应神经模糊推理系统的模式分类的组合。首先通过主成分分析方法提取手指静脉特征,以减轻计算负担并消除丢弃尺寸中的噪声。然后将特征用于模式分类和识别。为了验证所提出的自适应神经模糊推理系统在模式分类中的效果,将反向传播网络与所提出的系统进行了比较。实验结果表明,所提出的使用自适应神经模糊推理系统的系统比使用手指静脉模式进行个人识别的反向传播网络具有更好的性能。

著录项

  • 作者

    Wu Jian-Da;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号