首页> 外文OA文献 >An Efficient and Sensitive Decision Tree Approach to Mining Concept-Drifting Data Streams
【2h】

An Efficient and Sensitive Decision Tree Approach to Mining Concept-Drifting Data Streams

机译:挖掘概念漂移数据流的高效灵敏决策树方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

[[abstract]]Data stream mining has become a novel research topic of growing interest in knowledge discovery. Most proposed algorithms for data stream mining assume that each data block is basically a random sample from a stationary distribution, but many databases available violate this assumption. That is, the class of an instance may change over time, known as concept drift. In this paper, we propose a Sensitive Concept Drift Probing Decision Tree algorithm (SCRIPT), which is based on the statistical X2 �test, to handle the concept drift problem on data streams. Compared with the proposed methods, the advantages of SCRIPT include: a) it can avoid unnecessary system cost for stable data streams; b) it can immediately and efficiently corrects original classifier while data streams are instable; c) it is more suitable to the applications in which a sensitive detection of concept drift is required.
机译:[[摘要]]数据流挖掘已成为对知识发现越来越感兴趣的新研究主题。大多数提出的用于数据流挖掘的算法都假设每个数据块基本上都是来自固定分布的随机样本,但是许多可用的数据库违反了这一假设。也就是说,实例的类别可能会随时间变化,称为概念漂移。在本文中,我们提出了一种基于统计X2检验的敏感概念漂移探测决策树算法(SCRIPT),用于处理数据流中的概念漂移问题。与提出的方法相比,SCRIPT的优点包括:a)它可以避免不必要的系统成本,以保持稳定的数据流; b)当数据流不稳定时,它可以立即有效地纠正原始分类器; c)它更适合需要灵敏检测概念漂移的应用。

著录项

  • 作者

    Cheng-Jung Tsai;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号