首页> 外文OA文献 >Fast Compressed Sensing MRI Based on Complex Double-Density Dual-Tree Discrete Wavelet Transform
【2h】

Fast Compressed Sensing MRI Based on Complex Double-Density Dual-Tree Discrete Wavelet Transform

机译:基于复双密度双树离散小波变换的快速压缩传感MRI

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Compressed sensing (CS) has been applied to accelerate magnetic resonance imaging (MRI) for many years. Due to the lack of translation invariance of the wavelet basis, undersampled MRI reconstruction based on discrete wavelet transform may result in serious artifacts. In this paper, we propose a CS-based reconstruction scheme, which combines complex double-density dual-tree discrete wavelet transform (CDDDT-DWT) with fast iterative shrinkage/soft thresholding algorithm (FISTA) to efficiently reduce such visual artifacts. The CDDDT-DWT has the characteristics of shift invariance, high degree, and a good directional selectivity. In addition, FISTA has an excellent convergence rate, and the design of FISTA is simple. Compared with conventional CS-based reconstruction methods, the experimental results demonstrate that this novel approach achieves higher peak signal-to-noise ratio (PSNR), larger signal-to-noise ratio (SNR), better structural similarity index (SSIM), and lower relative error.
机译:压缩感测(CS)已被用于加速磁共振成像(MRI)多年。由于缺乏小波基的平移不变性,基于离散小波变换的欠采样MRI重建可能会导致严重的伪影。在本文中,我们提出了一种基于CS的重建方案,该方案将复杂的双密度双树离散小波变换(CDDDT-DWT)与快速迭代收缩/软阈值算法(FISTA)相结合,以有效地减少此类视觉伪像。 CDDDT-DWT具有位移不变性,高程度和良好的方向选择性的特征。另外,FISTA具有极好的收敛速度,并且FISTA的设计很简单。与传统的基于CS的重建方法相比,实验结果表明,该新方法可实现更高的峰值信噪比(PSNR),更大的信噪比(SNR),更好的结构相似性指标(SSIM)和较低的相对误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号